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Among numerous indoor localization systems, WiFi fingerprint-based localization has been one of the most

attractive solutions, which is known to be free of extra infrastructure and specialized hardware. To push

forward this approach for wide deployment, three crucial goals on high deployment ubiquity, high local-

ization accuracy, and low maintenance cost are desirable. However, due to severe challenges about signal

variation, device heterogeneity, and database degradation root in environmental dynamics, pioneer works

usually make a trade-off among them. In this article, we propose iToLoc, a deep learning-based localization

system that achieves all three goals simultaneously. Once trained, iToLoc will provide accurate localization

service for everyone using different devices and under diverse network conditions, and automatically update

itself to maintain reliable performance anytime. iToLoc is purely based on WiFi fingerprints without relying

on specific infrastructures. The core components of iToLoc are a domain adversarial neural network and a

co-training-based semi-supervised learning framework. Extensive experiments across 7 months with eight

different devices demonstrate that iToLoc achieves remarkable performance with an accuracy of 1.92 m and

>95% localization success rate. Even 7 months after the original fingerprint database was established, the rate

still maintains >90%, which significantly outperforms previous works.
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1 INTRODUCTION

Accurate and stable Indoor Location-based Service (ILBS) is a key enabler for many ubiqui-

tous applications. To provide ILBS, various wireless indoor localization techniques have been

proposed in the past decade, including WiFi [12, 48, 52, 53, 62], RFID [39, 45], acoustic signals [30],

and visual images [13, 25, 55, 57]. Among them, due to the wide deployment and availability of

WiFi infrastructure, WiFi Received Signal Strength (RSS) fingerprint-based indoor localization

has become one of the most attractive solutions [37, 40, 49, 59]. This approach generally has a

training stage, in which RSS fingerprints with location labels are collected by manual site survey

or leveraging crowdsourcing scheme [37, 59] to automatically form a fingerprint database (a.k.a.

radio map). Then, users are located by matching their fingerprint observation against the finger-

print database. Such a method has attracted attention from both academic and industrial communi-

ties. For instance, Microsoft hosts indoor localization competitions based on RSS fingerprints [31];

XiaoTianCai and HUAWEI develop smartwatches integrated with such modules to locate and pro-

tect children [21]; Baidu and Google deploy about 4,000 buildings to provide fingerprint-based

ILBS.

Despite extensive research, RSS fingerprint-based indoor localization frequently yields large lo-

calization errors and has not yet stepped in the prime time for wide deployment. We evaluated the

performance of the RSS fingerprint-based localization system in real business environments across

7 months and finally found that the primary hurdles are signal variation, device heterogeneity, and

database deterioration, as illustrated in Figure 1. On the one hand, diverse RSS will be encountered

at different times by different devices, which will lead to query fingerprint’s mismatch against the

database. Typically, location errors sometimes increase up to 10 m. On the other hand, considering

severe RSS variations and environmental changes, an initial fingerprint database may gradually

deteriorate, leading to grossly inaccurate location estimations. The fingerprint database may need

to be periodically calibrated, even reconstructed, which induces expensive maintenance costs.

Recent efforts attempt to overcome the above challenges by leveraging: (1) robust fingerprint

constructor and learning-based classifier: these works generate robust forms based on multiple

RSS fingerprints as new representations for each location [48, 58], and further employ deep neural

networks for classification [1]. And (2) additional information: inertial sensing [50], image match-

ing [54], and even physical layer Channel State Information (CSI) [10] have been recently incor-

porated for improving performance. Additionally, some recent approaches also leverage the extra

geometry constraints or user motion patterns provided by the above techniques to occasionally

update the fingerprint database [51], aiming to ease the maintenance cost.

Albeit inspiring, previous works make a sacrifice to overcome the above challenges and thus

face severe limitations. First, the localization accuracy and cross-device robustness remain low in

practice because of severe environment dynamics and device heterogeneity [56]. Second, we find

a theoretical gap between reliable localization and radio-map updates. A so-called chicken-egg

problem can explain it: reliable radio-map update depends on accurate localization of unlabeled

fingerprints. However, the localization performance is exactly influenced by the quality of pre-

updated radio-map [51, 59]. As a consequence, maintenance overhead has not been obviously re-

duced, and we still need to recollect the radio map frequently. Last but not least, although some

works may achieve enhanced accuracy, they also degrade the deployment ubiquity. For example, a

user needs to placidly hold smartphones horizontally or vertically for precisely collecting inertial

sensor data and images. However, this requirement is impractical [54, 60]. It is also required to

deploy extra infrastructures, including surveillance cameras, ultrasonic beacons, or specific WiFi

devices to collect CSI. Figure 2 illustrates qualitative comparison of state-of-the-art works. None

of the previous localization systems can simultaneously solve the above issues and achieve three

goals: high localization accuracy, low maintenance cost, and high deployment ubiquity.
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Fig. 1. Illustration of three key reasons that lead to frequent large localization bias: signal variation, device

heterogeneity, and database deterioration. Panels (a) and (b) show that RSS values are vulnerable to environ-

ment dynamics. In addition, automatic power adjustment strategy implemented in modern APs exaggerates

the RSS temporal fluctuations; due to inherent hardware characteristics, different devices may encounter

diverse RSSs of a specific Access Point (AP) under even identical wireless conditions. (c) Because of envi-

ronmental changes, an initial fingerprint database may gradually deteriorate, leading to inaccurate location

estimations.

Fig. 2. Comparison of state-of-the-art works.

In this work, we aim to achieve all the above three goals and propose iToLoc, a fine-grained

deep learning-based indoor localization system that is able to Train once, update automatically,

Locate anytime for anyone. Specifically, once trained, iToLoc will extract device-independent and

environmental dynamics-resistant features for accurate and robust localization. In addition, iToLoc

will automatically update itself, keep high localization accuracy, and ease maintenance costs for

the long-term. Our design and implementation of iToLoc excel in three unique aspects:

First, to achieve accurate and robust localization performance, we design a deep learning-based

framework that can remove the influence of signal variation and device heterogeneity contained in

collected RSS fingerprints and extract device-independent and dynamics-resistant features. The core

of the framework is a Domain Adversarial Neural Network (DANN) [15, 23], which consists

of four main components: fingerprint-image transformer, feature extractor, location predictor, and

domain discriminator. The feature extractor, which is a Convolutional Neural Network (CNN),
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cooperates with the enhanced location predictor to carry out the major task of localization, and

simultaneously, tries to fool the domain discriminator to learn the dynamics-resistant and device-

independent representations.

Second, to ease the system maintenance cost, we design a reliable model update framework,

unlike the recent works mentioned above. Our key insight is that query fingerprints can be seen

as unlabeled data; hence, we can treat radio-map adaption as model fine-tune on this unlabeled

dataset, which is a classical problem in the scope of semi-supervised learning. In this work, we

adopt the concept of co-training [14, 64] to fill the gap between robust localization and reliable

model update. Specifically, the location predictor in the DANN mentioned above is consists of

three modules with diverse network structures to enhance the diversity of classification view. Upon

receiving unlabeled fingerprints, three modules will co-determine the localization result and co-

refine the network according to the confidence.

Third, to ensure the system ubiquity for wide deployment, iToLoc is purely based on RSS fin-

gerprints without inducing additional costs or introducing extra information.

We have fully implemented iToLoc on six different types of commodity smartphones and two

types of smartwatches. Comprehensive experiments are carried out in three buildings with various

conditions. We deploy iToLoc in real business environments, and continuously evaluate the system

performance across 7 months. The results demonstrate that iToLoc achieves reliable performance

with an average accuracy of 1.92 m and a 95th percentile accuracy of 3.4 m, outperforming even

the best among four comparative approaches by >30%. The localization success rate of iToLoc is

>95%. Even 7 months after the fingerprint database is established, the localization success rate still

maintains >90%, outperforming other works by more than 20%. Achieving truly high precision, low

maintenance cost, and high deployment ubiquity, iToLoc takes an essential step toward practical

indoor localization for mobile users.

The core contributions are summarized as follows:

(1) We design a novel adversarial network-based localization framework. Based on the in-depth

understanding of RSS fingerprints and efficient design of the network model, the proposed

framework is able to extract device-independent and dynamics-resistant feature for robust

localization.

(2) We provide a fresh perspective to solve the radio-map automatic adaption problem based

on semi-supervised learning, which requires no additional hardware or extra user interven-

tion. Compared with existing methods, we first fill the gap between robust localization and

reliable model update.

(3) We prototype iToLoc on eight different types of devices (including two smartwatches) in

real environments for 7 months. Encouraging results demonstrate that iToLoc makes a great

progress toward fortifying WiFi fingerprint-based localization to an entirely practical service

for wide deployment.

The rest of article is organized as follows. We present an overview in Section 2 and introduce

adversarial learning-based robust localization in Section 3. Co-training-based reliable model update

is provided in Section 4, followed by implementation experiments in Section 5. We review related

works in Section 6 and conclude this article in Section 7.

2 SYSTEM OVERVIEW

As illustrated in Figure 3, the design of iToLoc follows the classical fingerprint framework, with

no more inputs than any existing fingerprint-based systems. Benefiting from this, we retain the

elegant ubiquity of WiFi fingerprinting. iToLoc contains two unique modules: adversarial learning-

based robust localization and co-training-based reliable model update. The adversarial network
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Fig. 3. System overview.

consists of four components: fingerprint-image transformer, feature extractor, domain discrimina-

tor, and location predictor (detailed design of the adversarial network with four components will

be described in Section 3). Same as traditional fingerprint-based systems, in the offline training

stage, the collected fingerprint database is leveraged to train the network. Afterward, the adver-

sarial network is able to extract robust device-independent and dynamics-resistant features based

on original RSS fingerprints, which improve the localization performance.

Upon receiving query fingerprints, location predictor will finally calculate the localization results.

In the meantime, the co-training-based reliable model update module will also be triggered to fine-

tune the pre-trained model leveraging these unlabeled fingerprints. The design of this module is

followed by the concept of semi-supervised learning (detailed description in Section 4). Based on

this strategy, iToLoc will automatically and reliably update the model. The updated model, which

has been adapted to the environmental changes, is then used for online localization for further

location queries.

3 ADVERSARIAL LEARNING-BASED ROBUST LOCALIZATION

An overview of the proposed adversarial learning model is shown in Figure 4. As aforementioned,

the goal of the proposed model is to extract device-independent and dynamics-resistant representa-

tions based on original RSS fingerprints.

Toward this goal, the 1D RSS fingerprint vectors are first transformed into 2D fingerprint im-

ages as the input data format by the component of fingerprint-image transformer for better

expressive ability, which will promote following components to extract more robust and stable

features. Afterward, the input images are transformed into latent representations by the compo-

nent of feature extractor. Using the learned feature representations, the location predictor is

leveraged to maximize the localization accuracy and obtain the location predictions. To remove

domain specific features, a domain discriminator is designed to label each domain (specifically,

to identify when the fingerprints are collected by what type of devices). The goal of domain discrimi-

nator is to maximize the domain labeling accuracy, which seemingly contradicts with our ultimate

goal of extracting domain-independent features. However, in our design, the feature extractor tries

its best to cheat the domain discriminator, and at the same time, boost the accuracy of the local-

ization results, which is termed as a minimax game [63]. Through the game, the feature extractor

can finally learn the common domain-independent features for all fingerprints. Besides, we design

a spatial constraint that can significantly reduce the appearance of large localization errors. The

details of our model will be elaborated in the rest of this section.
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Fig. 4. Overview of domain adversarial learning-based model.

3.1 Fingerprint-image Transformer

Suppose that each user receives the RSS values from neighboring N APs, namely, the data

f =
{
f1, f2, . . . , fN

}
is a 1D fingerprint vector of length N where fi denotes the RSS value ob-

tained from the APi . It is straightforward that we can directly take the above 1D fingerprint vec-

tor as the input, just like recent CNN-based localization systems [22, 42]. Nevertheless, this ap-

proach may not yield optimal performance for the adversarial network. The main reason is that

the feature extractor in mainstream domain adversarial networks is composed of only a few lay-

ers (typically no more than three layers) for a balance minimax game against domain discrimi-

nator without overfitting [23, 63]. Further, the convolution kernel in CNN is leveraged based on

the assumption that adjacent elements enjoy a certain spatial relationship (i.e., in an image, one

pixel’s color is relevant to its adjacent pixels) [16, 24]. To this end, the original 1D fingerprint

vector, which is composed of irrelevant RSS values, has limited information expressive ability

as network input and can not promote the adversarial network to extract domain-independent

features.

To solve this drawback, we design a fingerprint-image transformer to enhance the expres-

sive ability of original RSS fingerprints and fulfill the characteristics of adversarial networks.

Specifically, as illustrate in Figure 5, we first consider the Log-distance Path Loss (LDPL)

model, which describes the relationship between the RSS f and the physical distance d between

transceivers:

f = R − η10 lgd, (1)

where R and η are predefined reference RSS received at a distance of 1 m and path loss exponent,

respectively. According to Equation (1), the distance d can be calculated as follows:

d = 10
R−f
10η , (2)

here, the d cannot fully represent the physical distance between the sampling point and AP loca-

tion, but it reflects the relative signal propagation distance, which considering the signal occlusion

and multipath effects. We transform the RSS fi in f to the distance di according to Equation (2),

and obtain the distance vector d = {d1,d2, . . . ,dN }.
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Fig. 5. Fingerprint-image transformer: The left panel illustrates the transformation of the RSS vector f into

the physical distance vector d using the LDPL model. The right panel depicts the subsequent conversion of

the distance vector into a fingerprint image x. The elements in x range from −1 to positive infinity, with the

main diagonal elements inherently being zero.

Afterwards, we leverage the fingerprint image x (a 2D N × N matrix) as the input of the adver-

sarial network:

x =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

f ∗1,1 f ∗1,2 . . . f ∗1,N
f ∗2,1 f ∗2,2 . . . f ∗2,N
. . . . . . . . . . . .
f ∗N ,1 f ∗N ,2 . . . f ∗N ,N

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪
⎭

, (3)

where f ∗
j,k
= (dj − dk ) ∗ 1

dk
. Through the above steps, the fingerprint image x contains the basic

relationships between any two APs. Compared to the one-dimensional fingerprint vector, each ele-

ment in x is related to its adjacent elements. Additionally, all the ratios of the RSS in the original fin-

gerprint can be recalculated from x. Effectiveness of the proposed fingerprint-image transformer

will be evaluated in Section 5.3.

We let the fingerprint image x be the input data of the proposed model. Each xi has a corre-

sponding domain label di ∈ D, where D denotes the set of all the domains. Here, we refer to

the domains with and without label information as the source and target domain. Each labeled

fingerprint xi also has a location label yi ∈ Y , where Y is the set of all the location in the area of

interests. Let d denotes the domain label vector of x, and y be the ground truth vector of x. Thus,

the inputs of our model are the 2D fingerprint image x, the domain label vector d, and the ground

truth location y.

3.2 Feature Extractor

In this work, a two-layer CNN module denoted as ME is employed as the feature extractor to

extract latent features. Let ΘME
denote the set of parameters associated with ME . Given input data

xi , the corresponding latent feature Z i is obtained as follows:

Z i = ME (xi ; ΘME
). (4)

3.3 Location Predictor

We design three different CNN modules M1, M2, M3 and integrate them into a location predictor.

These three modules are used to learn three different representations VM1

i , VM2

i , and VM3

i of xi

ACM Transactions on Sensor Networks, Vol. 20, No. 2, Article 37. Publication date: January 2024.



37:8 D. Li et al.

based on Z i :

VMk

i = Mk (Z i ; ΘMk
);k = 1, 2, 3, (5)

where ΘMk
are the parameters of Mk to be learned. To predict the labels, we map the feature

representationV i to the latent spaceRC , whereC is the number of locations in the area of interests.

Moreover, a softmax layer is used to obtain the probability vector as follows:

ŷ
Mk

i = Softmax
(
W Mk

v VMk

i + bMk
v

)
;k = 1, 2, 3, (6)

where W Mk
v and bMk

v are the parameters. ŷ
Mk

i denotes the predicted probabilities of labeled data

by module Mk . The loss of the location predictor, La , is defined as the cross-entropy as follows:

La = −
1

|X|

|X |∑

i=1

3∑

k=1

C∑

c=1

yic log
(
ŷ

Mk

ic

)
, (7)

where |X| is the number of fingerprints in the training set. During the training, the feature extractor

and location predictor play a cooperative game to minimize the La .

3.4 Domain Discriminator

In our adversarial network, the domain is defined as a pair of device and time. The rationale be-

hind making this definition are twofold: On the one hand, mobile devices with diverse types of

wireless cards have distinct capacities of sensing Wi-Fi signals, some are especially sensitive but

some are not. Taking device variety into consideration will help adversarial network learn device-

independent representations. On the other hand, RSS values are very noisy and fluctuant due to

multi-path and shadow fading effects. Superadded with the affection to signal propagation caused

by temperature, humidity, and movement of people, the distributions of RSS values of different

time periods vary a lot. Given the difficulty to accurately profile environmental dynamics or RSS

variance, it is of great help to treat time as another attribute to enable the adversarial network to

extract dynamics-resistant features [43].

For the domain discriminator to identify the domain labels of the input fingerprints, we design

a CNN module MD to learn the representationU i of xi based on Z i :

U i = MD (Z i ; ΘMD
), (8)

and map U i into domain distribution d̂i :

d̂i = Softmax(Wu Ui + bu ). (9)

We define the loss as the cross-entropy between the domain distribution and true domain labels:

Ld = −
1

|X|

|X |∑

i=1

|D |∑

j=1

di j log(d̂i j ), (10)

where di is the one-hot vector of true domain labels. The goal of the domain discriminator is

to minimize Ld to maximize the performance of domain prediction, which contradicts with our

ultimate goal of learning domain-independent features. To address this contradiction, we maximize

the domain discriminator loss Ld in final objective function. Based on Equations (7) and (10), we

can obtain the loss function as follows:

L = La − λLd (λ > 0). (11)

Through this minimax game, we can learn the common domain-independent features for all the

fingerprints.
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Fig. 6. Learned representations by different frameworks: (a) In baseline CNN framework, the features are

separated according to different domains, however mixed under different locations, which will lead to lo-

calization bias. (b) In iToLoc, features are clustered corresponding to different locations, and mixed under

different domains, which will increase localization robustness.

3.5 Spatial Constraint

We design a spatial constraint on the estimated location ŷi , which penalizes ŷi when it is incon-

sistent with and far away from the ground truth yi . The loss of the spatial constraint is defined as

follows:

Ls =
1

|X|

|X |∑

i=1

C∑

c=1

wyi c ŷic , (12)

where ŷic denotes the predicted probability of the fingerprint at the cth location, while wyi c sig-

nifies a normalized weight that encapsulates the physical distance between the cth location and

the ground truth. As the cth location approaches the ground truth, the corresponding weightwyi c

diminishes toward zero. This weight is normalized by the maximum distance within the space,

ensuring that all weights fall within [0, 1]. Such normalization preserves the integrity of relative

distances and mitigates the potential adverse impact of excessively unbalanced weight values on

the training process. In most existing localization applications, the physical coordinates of each

sampling location are carefully recorded during the fingerprints collection stage, therefore wyi c

can be obtained without any additional effort.

3.6 Objective and Training

With the spatial constraint, we can finally give the overall loss function as follows:

L = La + γLs − λLd (γ , λ > 0). (13)

Following the training process of DANN [15], we iteratively update the parameters. Let Ω =
{Δ, Γ} be the set of all the parameters, where Δ denotes the parameters in the domain discriminator.

We first fix Δ and update the remaining parameters Γ = Ω − Δ, and then fix Γ to update Δ.

The ultimate goal of the proposed adversarial learning-based framework is to learn device-

independent and dynamics-resistant representations of locations. To qualitatively evaluate the

learned representations, we conduct the following experiment. We first select fingerprints col-

lected at two different locations under two different domains (when to collect and by which de-

vice), i.e., four location and domain pairs. Then, we randomly select 30 fingerprint samples for

each pair and extract features according to Equation (4) by baseline CNN frameworks and iToLoc,

respectively. Finally, we plot the learned representations of these samples on a 2D space with a

manifold learning algorithm t-SNE [32]. In Figure 6, we use orange and purple colors to represent

different locations where the fingerprints are collected, circle and triangle markers to represent
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Fig. 7. Training process of model update.

source domain (time and device labels are known) and target domain (unknown time and device),

respectively. As shown in Figure 6(a), the features learned from the baseline method are clustered

according to different domains. What’s worse, in the target domain (triangle markers), the features

corresponding to different locations are mixed together, which will lead to various localization bias.

In contrast, as shown in Figure 6(b), features extracted by iToLoc can form two clearly separate

clusters, where each cluster corresponds to the different locations. Moreover, we can observe that

within each location cluster, samples from different domains have almost the same distribution.

This result demonstrates the effectiveness of the proposed domain adversarial training to learn

device-independent and dynamics-resistant localization features.

4 CO-TRAINING-BASED RELIABLE MODEL UPDATE

The training process of model update is shown in Figure 7. ME denotes the well-trained feature

extractor,M1,M2, andM3 are the three modules in the location predictor. During the model update,

a part of unlabeled fingerprints will be labeled and added to the training set. With three different

modules M1, M2, and M3, if two modules agree on the prediction of unlabeled fingerprint and the

prediction is confident and stable, this reliable fingerprint with the pseudo-label predicted by the

two modules is added into the training sets of the third module. The third module is refined with

the augmented training set. The details of fingerprint selection will be presented in Section 4.1.

However, the three modules will be more similar, since they augment the training sets of one

another. To tackle this problem, we fine-tune the modules by smearing labeled data to augment

the diversity among them in some specific rounds. The details of diversity augmentation will be

presented in Section 4.2. With the above techniques for the model update, iToLoc can adapt to the

unpredictable environmental dynamic and provide long-term services.

4.1 Reliable Fingerprint Selection

It is possible that the pseudo-labels assigned to newly labeled fingerprints may be inaccurate, and

these inaccuracies can have a negative impact on performance. Therefore, we must carefully select

confident and stable fingerprints. Here, a confident prediction is characterized by the condition

where the average maximum posterior probability of the two modules surpasses a threshold σ . A

larger σ value demands a higher degree of confidence for the inclusion of new fingerprints. Here,

confident prediction means that the average maximum posterior probability of the two modules is

larger than a threshold σ . Stable prediction means that the pseudo-label should not change much

when the modules predict the fingerprint repeatedly. We leverage a data-editing method [14] with

dropout to determine the stability of the selected fingerprints. Generally, dropout works in two

modes: at training mode, the connections of the network are different in every forward pass; at test
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Train Once, Locate Anytime for Anyone 37:11

mode, the connections are fixed. This means that the prediction for dropout working in training

mode may change. For each (xi , ȳi ), ȳi is the pseudo-label predicted by the modules working in test

mode. And we use dropout working in train mode to measure the stability of the pseudo-labeled

data, i.e., we use the modules to predict the label of xi for K times in training mode and record

the frequency k that the prediction is different from ȳi . If k > K
3 , then we regard the pseudo-

label ȳi of xi as an unstable pseudo-label. For these unstable pseudo labels, we will eliminate

them.

4.2 Diversity Augmentation

Diversity among the three modules plays a vital role in the training process of model update. Al-

though we use different network structures to enhance the diversity of classification views, when

three modules label unlabeled data to augment the training sets of one another, they become more

and more similar. To maintain the diversity, we use output smearing [8] to generate three differ-

ent labeled data sets (i.e., D1, D2, and D3) from the labeled training set D. Here, output smearing

constructs diverse training sets by injecting random noise into true labels and generating modules

from the diverse training sets. We apply this technique to fine-tune our modules M1, M2 and M3.

For example (xi , yi ), where yi = (yi1, yi2, . . . , yic ) , yic = 1 if the example belongs to the cth class

otherwise yic = 0. In output smearing, we add noise into every component of yi :

y′ic = yic + ReLU (zic × std ) , (14)

where zic is independently sampled from the standard normal distribution. We use std to scale

the amplitude of zic , which represents the standard deviation of the noise. The ReLU function is

applied to ensure that the output values y′ic are non-negative. Then, we normalize y′ic as follows:

y′i =
(
y′i1, y

′
i2, . . . , y

′
ic

)
/

C∑

c=1

y′ic . (15)

With output smearing, we construct three diverse training sets D1, D2, and D3. Then, we fine-

tune three modules M1, M2, and M3 on the diverse training set in specific rounds.

4.3 Rationale Behind Reliable Model Update

In this subsection, we explain the rationale behind the proposed strategy for the reliable model

update. First, the fundamental of the strategy is the disagreement-based semi-supervised learning

whose basic idea is to train multiple learners for the same task but exploit the disagreements dur-

ing the learning process. Many theoretical studies have explained why unlabeled data can improve

learning performance and efficiently fine-tune models based on such strategy [5–7, 46]. In our

proposed co-training-based model update, the disagreement is exactly reflected in different views:

Three modules are constructed from different network structures, and the diversity augmenta-

tion method is leveraged to enhance diversity among different training data for each module. We

plot the learned views of three modules (M1, M2, and M3). As shown in Figure 8, the disagree-

ment generated by different views on the fingerprints guides the model to update the classifica-

tion boundaries effectively. Second, unlike previous works that the original unlabeled fingerprints

are directly leveraged to update radio-map based on localization results, iToLoc first removes the

device-associated and dynamics-influenced noises contained in unlabeled fingerprints and focuses

on the essential information to simultaneously predict locations and update the model. Compared

with related works, our model update strategy is more reliable and can further ease the system

maintenance for the long term.
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Fig. 8. The orange and purple colors represent different locations. The star markers in different views repre-

sent latent features of the same input fingerprint. The latent features of location 1 marked in the M1 and M2

views are at the center of the cluster, while the latent feature of the same input in the view of M3 are away

from the cluster. Similarly, the disagreement between the different views is also reflected in the samples of

location 2.

Fig. 9. Experimental areas.

5 IMPLEMENTATION AND EVALUATION

5.1 Experimental Methodology

We prototype iToLoc on the popular Android OS and conduct experiments using 8 different de-

vices over various scenarios. Furthermore, we deploy iToLoc in real business environments, and

continuously evaluate the system performance across 7 months. In this section, we first introduce

the experimental settings and then present the detailed evaluation.

5.1.1 Experimental Scenarios and Datasets. We carry out experiments in three different build-

ings with various floor layouts and diverse wireless environments. Figure 9 shows the floor plans

of experimental areas. The wireless conditions and environmental dynamism are pretty different

in the three buildings. Office building enjoys the most stable wireless environment; the classroom

building is crowded or empty to different extents depending on the course schedule, which influ-

ence the wireless condition. As for the shopping mall, both the wireless condition and environ-

mental layout change frequently, which may lead to short life cycles of the collected fingerprint

database.

The data collection details are summarized in Table 1. The training samples are collected once

at the beginning, while test samples are collected multiple times at intervals. When collecting

fingerprints for training, we employ a typical sampling frequency of around 1Hz. We employ 8

phones of 6 different models that are manufactured by different companies for data collection,

including two HUAWEI P10, one Lenovo Phab2 pro, two Google Nexus 6p, one Google Nexus 7,

one Millet 6 and one Millet 9, which are equipped with different WiFi chips. To further evaluate
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Table 1. Data Collection in Different Scenarios

# Building type Size(m2) Density Devices Region Samples Duration

1 Office 600 1m × 1m HUAWEI P10 * 2, Phab2,

Nexus 6p * 2/7, Millet 6/9

13 72K 2 weeks

2 Classroom 1,360 1.5m × 1.5m HUAWEI P10 * 2, Phab2,

Nexus 6p * 2/7, Millet 6/9

18 96K 2 weeks

3 Shopping mall 2,130 — HUAWEI P10 * 2, Phab2, 30 288K 7 months

Nexus 6p * 2/7, Millet 6/9, imoo Z5/Z6

Fig. 10. The architecture of iToLoc.

the robustness of iToLoc in device diversity, we additionally employ two kinds of smartwatches,

imoo Z5 and imoo Z6, to collect wireless fingerprints during the testing process.

5.1.2 Network Architectures and Parameters. The network architecture of iToLoc is illustrated

in Figure 10. Different convolution kernel sizes and network units (with/without residual block)

are integrated into M1, M2, and M3 to enhance the diversity of the learned views among the three

modules. The backbone network structure of iToLoc is consistent in all scenarios. However, the

size of the input layer varies according to the number of APs in the fingerprint.

We use dropout (p = 0.5) after each max-pooling layer with Leaky-ReLU (α = 0.1) as activate

function except the FC layer, which is soft-max. Batch-Normalization is equipped for all layers.

The learning rate starts from 0.1 in adversarial training (0.01 in model update) and is divided by

10 when the error plateaus. We maintain a batch size of 32 across the whole set of experiments.

We use SGD optimizer schedule for gradient descent optimizer with weight decay of 0.0001 and a

momentum of 0.9.

During the offline stage, all modules are trained for 200 epochs for initialization. Subsequently,

modules M1, M2, M3 are trained for 60 epochs for updating. During the model update, to prevent

the network from overfitting, the reliable unlabeled fingerprints are selected from a pool, and we

gradually increase the pool size N = 60 × 2t up to the size of the unlabeled dataset U [38], where

t = 24 denotes the learning round in all experiments. In the training process, we fine-tune the

three modules M1, M2, and M3 on the diverse training sets D1, D2, and D3 every three rounds after

N = |U | to maintain diversity. As previously mentioned, since D1, D2, and D3 are artificially fused

with random noise, we progressively lower the confidence threshold σ by decreasing σos from

its initial value σ0 once N = |U |, allowing more unlabeled data to be labeled. Specifically, in the

shopping mall dataset, we set σ0 = 0.96 and σos = 0.1; in the office and classroom building dataset,

we set σ0 = 0.98 and σos = 0.05. Empirical hyper-parameters in adversarial training (Equation (13))
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Fig. 11. Accuracy comparison. Fig. 12. Comparison in different

areas.

Fig. 13. Comparison in temporal

robustness.

are set as follows: γ = 0.2, and λ = 0.4. In output smearing (Equation (14)), we set std = 0.05 for

all three datasets.

5.1.3 Comparative Methods. To extensively evaluate the performance of iToLoc, we implement

seven state-of-the-art approaches for comparison. We compare the localization accuracy and ro-

bustness of iToLoc without model update for short-term (within 2 weeks) with ViViPlus [58],

WiDeep [1], CNNLoc [22], and GIFT [41]. And we further evaluate the automatic maintainability

of iToLoc as well as AcMu [51], Chameleon [18], WILL [50], and CapsLoc [61] with model update

for long-term (across 7 months).

5.1.4 Evaluation Metrics. In line with prior research, we adopt two methods to evaluate the

localization performance. (1) Distance-level localization bias, which serves as a fine-grained indica-

tor of performance. To achieve this, RSS fingerprints are collected at densely set checkpoints, as

depicted in Figures 9(a) and 9(b), and the locations of these checkpoints are used as ground truth.

The localization bias is defined as the Euler-distance between the localization result and the ground

truth. (2) Region-level localization success rate, which is a relatively coarse-grained but intuitive and

meaningful performance indicator. Here, we determine the rate at which a system correctly locates

a user in the designated room or region that has been segmented. For the purposes of our study, we

did not consider whether specific points within a room were accurately located. Typically, region-

level localization metrics are more appropriate for coarser-grained indoor localization applications,

while distance-level metrics are better suited for precise indoor navigation.

Both indicators are leveraged in experiments in the office and classroom buildings. However, due

to the vast area of the shopping mall and the irregular shape of its public areas, a straightforward

partitioning strategy was employed to divide the mall into distinct regions, wherein fingerprint

data were collected and labeled for each region. The rationale behind this strategy was to avoid

the complexity and time-consuming process of meticulously recording the physical coordinates of

every point within such a large area. Consequently, the localization success rate was used as the

sole performance metric to evaluate the localization performance, without taking into account the

exact physical coordinates of each point.

5.2 Performance Evaluation

5.2.1 Overall Performance Comparison. We first evaluate the performance of iToLoc without

the model update in short-term localization scenarios. Figure 11 depicts the performance of the

proposed iToLoc as well as three other comparative systems. As shown, iToLoc achieves the best

performance among all comparative systems. The average accuracy of iToLoc is 1.92 m, which

outperforms CNNLoc by 32.1%, WiDeep by 51.7%, and ViViPlus by 52.1%. The 95th percentile

accuracy of iToLoc outperforms these systems by 24.6%, 40.2%, and 29.5%, respectively. The results

demonstrate iToLoc achieves remarkable performance based on only RSS fingerprints without

introducing extra information or constraints.
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Fig. 14. Comparison in cross-

device robustness.

Fig. 15. Comparison in model update.

5.2.2 Performance Comparison in Different Areas. We further evaluate the performance in three

different environments, as shown in Figure 9. In each environment, we send more than 1,000

queries and calculate the localization success rate. As depicted in Figure 12, iToLoc yields an aver-

age localization success rate of 96.8% in the office building, 95.8% in the classroom, and 95.3% in

the shopping mall. And outperforms the other approaches by over 8% in all environments. Com-

pared with the other approaches that the success rate varied by more than 5%, iToLoc yields similar

performance (the differences in success rate are within 1.5%) regardless of the environments.

5.2.3 Performance Comparison with Different Time Interval. We also examine localization ro-

bustness in terms of temporal stability. We recollect fingerprints during different time intervals

and use the original fingerprint database without update for localization. Figure 13 depicts the per-

formance of iToLoc as well as the three approaches. iToLoc yields a similar success rate of more

than 95% even after two weeks. Compared with related works where the success rates decrease

more than 9%, the decrease in success rate for iToLoc is within 1%. The results demonstrate that

based on pure RSS fingerprints, iToLoc extracts robust features that resist the fingerprint temporal

instability caused by wireless signal fluctuation.

5.2.4 Performance Comparison with Device Diversity. We evaluate the cross-device robustness

of iToLoc by involving various devices in training and testing stages. In the training stage, we

use the fingerprints collected by five different devices, including Phab2 pro, Nexus 6p, Nexus 7,

Millet 6, and Millet 9. And five other devices are used in the test stage. As shown in Figure 14, all

comparative approaches severely suffer from device heterogeneity. Compared with these works,

the variety of localization success rate of iToLoc is within 1%. Note that the WiFi chips for imoo

Z5 and Z6 smartwatches vary considerably from those for the above smartphones. iToLoc still

achieves outstanding performance under such a strict condition, demonstrating that iToLoc can

tolerate device diversity much better than comparative methods.

5.2.5 Long-term Performance Comparison. We finally compare iToLoc with related systems

equipped with radio-map automatic update algorithms to verify the effectiveness of the proposed

semi-supervised learning-based model update framework. We continuously collect RSS finger-

prints and evaluate the performance of systems over 7 months. Throughout the given period, our

dependence on ubiquitously deployed WiFi devices prevents us from obtaining knowledge on po-

tential infrastructure modifications, including the replacement, addition, or removal of one or more

APs. Hence, we employ the auto-update algorithm every week to facilitate the model’s adaptabil-

ity to any undetermined environmental changes. Figure 15 records performance variation dur-

ing such a long period. As shown, iToLoc achieves the best performance among all comparative

systems at any given time. Even after seven months, the localization success rate of iToLoc still

maintains 91%, which only decreases by 5.8% compared with other systems by at least 17%. Com-

paring the solid red line and dotted line, we can find that the proposed co-training-based reliable

model update framework efficiently maintains the system performance. It is worth mentioning
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Fig. 16. Accuracy on each target

domain.

Fig. 17. Performance of 2D finger-

print image.

Fig. 18. Performance of spatial

constraint.

that in the 18th week, due to the redecoration of the shopping mall, the performance of four com-

parative systems decreased sharply. In particular, CapsLoc, which lacked the ability to adapt to

environmental changes, decreased by more than 10%. However, the impact on the performance of

the proposed system iToLoc was negligible, with a localization accuracy decrease of no more than

2%. The above remarkable results demonstrate that the proposed iToLoc is qualified for locating in

dynamic environments, and the semi-supervised learning-based model update framework is able

to maintain the system’s performance for a long time. In addition, unlike AcMu and WILL, iToLoc

does not incorporate extra information (IMU, floor plan, etc.). Thus, the ubiquitousness of iToLoc

retains the potential for wide deployment in practical service.

5.3 Study of Core Components

5.3.1 Impact of Robust Feature Extractor. We quantitatively analyze the performance of the

DANN-based robust feature extractor with the baseline method without domain adversarial train-

ing strategy. We divide the training dataset into 22 source domains (5 devices with 6 time periods)

and test set into 25 target domains (5 devices with 5 time periods) for evaluation. Figure 16 shows

the accuracy on each target domain. The standard deviation of the localization success rate using

the robust feature extractor is only 0.24%, while the baseline method is up to 1.62%. The average ac-

curacy of our approach is also higher than the baseline by 4.9%. The above remarkable performance

indicates that our model is capable of extracting device-independent and dynamics-resistant

features.

5.3.2 Impact of Fingerprint-image Transformer. In this experiment, we aim to validate the ad-

vantages of the proposed fingerprint-image transformer. We focus on the relative accuracy other

than the absolute improvement achieved by our approach. In each experimental scenario, we use

the 2D fingerprint image with LDPL, 2D fingerprint image without LDPL and 1D fingerprint vector

as their inputs, respectively. As shown in Figure 17, by leveraging the fingerprint image generated

without LDPL as input, the performance gain is 2.0%, 1.6%, and 3.5% in the office building, class-

room building, and shopping mall, respectively. Meanwhile, the 2D fingerprint image generated

with LDPL is about 0.5% better than the one without LDPL in terms of overall performance. This

results demonstrate that the proposed fingerprint-image transformer will further promote iToLoc

to extract domain-independent robust features.

5.3.3 Impact of Spatial Constraint. We further evaluate the spatial constraint, which is proposed

to solve the frequent significant localization bias. As shown in Figure 18, the average accuracy out-

performs the method without spatial constraint by 18.3%, and the improvement of 95th percentile

location error is 32.4%, achieving a mean accuracy of 1.86 m and 95th percentile accuracy of 5.41 m.

The results demonstrate that the spatial constraint can effectively reduce large errors and improve

overall localization performance.
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Fig. 19. Performance of ensemble classifier. Fig. 20. Number of domains used for

training.

Fig. 21. The models with and without adversarial learning are evaluated on the same dataset. A higher

domain loss indicates the removal of domain specific information, and a lower test loss shows that the

proposed DANN can better avoid overfitting.

5.3.4 Impact of Ensemble Classifier. In this experiment, we evaluate the performance of ensem-

ble classifier (M1, M2, and M3) in location predictor. We compare with a baseline model, which has

only one classifier M1 in location predictor. As shown in Figure 19, our method outperforms the

baseline by 1.65%, 1.77%, and 1.68% in office building, classroom building, and shopping mall, re-

spectively. The results demonstrate that ensemble classifier can effectively leverage multiple views

from three classifiers with different architecture for localization.

5.4 Training of DANN

5.4.1 Number of Domains Used for Training. As shown in Figure 20, we gradually increase the

number of source domains from 1 to 22 while keep the total amount of data in the training set un-

changed. When there are only 1 or 2 source domains, iToLoc has relatively low accuracy, because

most of the fingerprints have no domain label so that the discriminator is difficult to extract do-

main independent features. As the number of source domains increases, iToLoc is able to extract

the common features shared by both source and target domains. It is worth mentioning that when

the number of domains reaches 14, the performance of iToLoc in office building will no longer

improve, but in the more complex environments, especially the shopping mall, the performance is

still improved even if the number of domains is large enough.

5.4.2 Qualitative Analysis of Training Loss. To qualitatively evaluate the learned robust feature,

we look at the losses on the training set and test set as training progresses to check whether the

extraneous information specific to the devices and time periods can be removed. We compare

with a version of our model without the domain discriminator. For this baseline, we train a (non-

adversarial) discriminator to determine the domain of features. Figure 21(a) shows that the loss

of the domain discriminator in the baseline model decreases very quickly while ours stays high,

suggesting that our learned robust feature is invariant across source domain. Figure 21(b) also
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shows that adding an domain discriminator increases the performance on the test set and can be

helpful in reducing over-fitting.

6 RELATED WORK

Indoor localization has attracted vast research efforts during the past decades. We briefly review

the most related latest works in the following.

Fingerprint-based indoor localization. Fingerprint-based indoor localization is a commonly

used approach that utilizes radio-map to determine the location of mobile devices in indoor en-

vironments. The mainstream of existing methods rely on RSS observations from wireless signals,

such as Wi-Fi and Bluetooth, at known locations to generate fingerprints [27, 29, 59]. These sys-

tems typically involve two phases: during the offline training phase, an RSS fingerprint database is

constructed with labeled fingerprints and their corresponding physical locations. In the online

localization phase, the location of the mobile device is determined through fingerprint match-

ing [4, 27]. Despite being a well-established localization paradigm, fingerprint-based localization

encounters challenges in today’s dynamic indoor environments due to signal fluctuations, device

heterogeneity, and degradation of the radio-map [26, 36, 48].

Robust wireless fingerprint extractor. To enhance the localization robustness without com-

promising the ubiquity of fingerprint-based approaches, various subsequent works have sought to

find a robust and expressive form of RSS fingerprints [11, 17, 28, 33, 40]. In particular, recent inno-

vations explore the spatial/temporal properties of fingerprints for localization. GIFT [41] defines

a metric of binary differential value between RSS observed at two adjacent locations as replace-

ments to the original RSS values as fingerprints; ViVi [48] and ViViPlus [58] explore the spatial

gradient of selected multiple neighboring fingerprints to deal with the device heterogeneity as

well as spatial ambiguity. However, the localization accuracy and cross-device robustness still re-

main low in practice due to frequent environmental changes and device heterogeneity. Compared

with these works, iToLoc extracts device-independent and dynamics-resistant features, which have

been demonstrated to be more robustness.

Deep learning assisted localization. There has been some recent work in localization using

deep neural networks [2, 3, 35, 47]. Some works are also equipped with deep learning models to

enhance fingerprint matching. In References [9, 20, 22, 34, 42], the CNN-based WiFi fingerprint-

ing method was presented to pursue better performance. WiDeep [1] integrates a stacked auto-

encoders deep learning model with a probabilistic framework to handle the noise and capture the

complex relationship between the WiFi APs signals. The previous approaches [36, 43] have shown

that considering fingerprint collection time and device as domains and utilizing domain-adaptive

transfer learning-based frameworks can significantly improve the accuracy of localization. Despite

the increased offline training work and online inference time required by deep learning-based

methods, which are considered secondary to localization accuracy, their significant performance

improvements cannot be denied. Such advancements have further propelled the development of

high-resolution indoor localization applications. Inspired by recent works, iToLoc leverages ad-

versarial network to extract robust domain-independent representations.

Fingerprint database automatic update. Considering environmental dynamics, pioneering

works, including LiFs [59], UnLoc [44], WILL [50], and AcMu [51], leverage the various built-in

sensors in smartphones to provide extra range constraints for accurate localization results and fur-

ther conditionally update the fingerprint database. However, they induce extra constraints to user

behaviors and degrade the system ubiquity. Some recent transfer learning-based techniques, such

as manifold alignment, are also applied to correct RSS measurements and update radio-map over

time [18, 19]. However, the fingerprint database will also gradually deteriorate, because there is still

a gap between reliable adaption and robust localization. In contrast, iToLoc treats the radio-map
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adaption problem as a semi-supervised learning task and leverages co-training-based framework

to automatically update the model, which has been demonstrated more effective to underpin a

long-term localization service.

7 CONCLUSION

In this article, we propose iToLoc, a deep learning-based localization system that achieves all

three goals on high deployment ubiquity, high localization accuracy and robustness, and low

maintenance overhead simultaneously. We prototype iToLoc and evaluate it by extensive exper-

iments across 7 months and by eight different devices. The results demonstrate its superior per-

formance over previous schemes. Trained once, locate anytime for anyone: iToLoc makes a great

progress toward fortifying WiFi fingerprint-based localization to a fully practical service for wide

deployment.
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