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Abstract—Location awareness in environments is one of the key
parts for drones’ applications and have been explored through
various visual sensors. However, standard cameras easily suffer
from motion blur under high moving speeds and low-quality
image under poor illumination, which brings challenges for
drones to perform motion tracking. Recently, a kind of bio-
inspired sensors called event cameras emerge, offering advan-
tages like high temporal resolution, high dynamic range and
low latency, which motivate us to explore their potential to
perform motion tracking in limited scenarios. In this paper,
we propose FlyTracker, aiming at developing visual sensing
ability for drones of both individual and circumambient location-
relevant contextual, by using a monocular event camera. In
FlyTracker, background-subtraction-based method is proposed
to distinguish moving objects from background and fusion-based
photometric features are carefully designed to obtain motion
information. Through multilevel fusion of events and images,
which are heterogeneous visual data, FlyTracker can effectively
and reliably track the 6-DoF pose of the drone as well as monitor
relative positions of moving obstacles. We evaluate performance
of FlyTracker in different environments and the results show that
FlyTracker is more accurate than the state-of-the-art baselines.

I. INTRODUCTION

With the rapid development of smart cities, commercial
drones are more and more popular in quantities of smart
applications like aerial photography, entertaining showing,
transportation management, and even emergency rescue due
to their flexible flight control system. Location awareness
in various environments is one of the key parts for these
applications, always called the six-degree-of-freedom (6-DoF)
pose tracking in drone flight control, providing a drone with
its location and orientation in 3D space to help the drone keep
flight attitude and adjust moving path.

Solutions for 6-DoF pose tracking [1]-[3] have been re-
searched for a long time. Among these algorithms and sys-
tem, vision-based methods become one of the most attractive
solutions because of the gradual maturity of computer vision
processing technology and the increasing abundance of two-
dimensional environmental information provided by visual
sensors. For on-drone pose tracking systems, visual sensors
cooperating with Inertial Measurement Unit (IMU) are widely
adopted [4], [5]. These methods obtain poses of a drone
through jointly optimizing the results of image feature match-
ing and IMU motion estimation. Another type of widely-used
pose tracking methods depend on the fusion of visual sensors

and LiDAR [6], [7], also enabling a continuous estimation
of 6-DoF poses for drones. However, in practice, drones
usually fly with uneven velocity across complex environments
to perform application tasks (especially applications related to
rescue detection). Vision-based methods are easily suffer from
low image quality caused from motion blur, poor illumination
or HDR scenarios, where the performance of image feature
matching decreases a lot, and further decrease the accuracy of
pose estimation [8], [9]. Moreover, various kinds of moving
objects may appear in the Field of View (FoV) of a drone.
Moving objects in FoV, especially high-speed obstacles, not
only affect the accuracy of pose estimation, but also bring
crash risks to the drone. Therefore, existing vision-based
methods of 6-DoF pose tracking cannot be directly applied
for drone flight control in some challenging scenarios.
Recently, a kind of bio-inspired sensors called event cam-
eras emerge and have attracted much attentions. Event cameras
are asynchronous sensors that pose a paradigm shift in the way
visual information is acquired. This is because they sample
light based on the scene dynamics, rather than on a clock
that has no relation to the viewed scene. Event cameras can
offer several advantages such as very high temporal resolution
and low latency, very high dynamic range, and low power
consumption, which suggests that they have a large potential
for robotics applications in challenging scenarios. Motivated
by the aforementioned situation, we explore the practicability
of combining events and standard image frames to perform
6-DoF pose tracking for drones. We consider to fuse events
into vision-based methods based on two insights. First, event
cameras measure the changes of scene brightness in contrast of
standard cameras providing absolute brightness measurement.
An event is triggered by a pixel when the log intensity (a
representation of brightness) of the pixel exceeds a threshold.
Thus, event-based features are more robust to the change of
illumination than image-based features. Second, event cameras
monitor brightness changes very fast through analog circuitry,
and read out events in digital manner with a 1M Hz clock.
The microsecond resolution of which events are detected
and timestamped make it easier to detect and track high-
speed moving objects by using event-based features. Generally
speaking, event cameras do well in sensing motion with very
low latency and measure changes of brightness, while standard
cameras provide absolute brightness measurement for each
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pixel but with relatively high latency. Thus, Event cameras
and standard cameras are complementary for developing novel
algorithms capable of combining the specific advantages of
both cameras to perform location aware tasks with high
temporal resolution. Dynamic and Active-pixel Vision Sensor
(DAVIS) is recently introduced by Brandli ef al. [10] in this
spirit. It is a sensor comprising an asynchronous event-based
sensor and a standard image-based camera in the same pixel
array, which is portable enough to be equipped on a drone.

In this paper, we propose a monocular 6-DoF pose tracking
system, named FlyTracker, for drone flight control. In the de-
sign of FlyTracker, the heterogeneous visual data, i.e., standard
image frames and asynchronous event streams, is tightly fusion
for motion tracking in front end. Specifically, a brightness in-
crement model is built from the accumulated events, producing
an intuitive representation of the scene brightness change in a
tiny time period. Meanwhile, a predicted brightness increment
model is built from image brightness gradient and optical
flow in that time period, describing the brightness increment
caused by moving contours according the Event Generation
Model (EGM). Then, pose changes is estimated by a joint
optimization that minimizing the difference of the two models.
To reduce the impact of moving objects on motion tracking
accuracy, an online background-subtraction-based method is
proposed to detect whether there is any moving obstacle
appears in the FoV of the drone. Once a moving obstacle
is found, a coarse-grained mask of the obstacle is quickly
calculated that is further used to distinguish obstacle part and
background part on the image plane. So that the ego-motion
tracking can be performed only using visual data belong to
the background part. The motion tracking methods based on
the fusion of events and images can also be used to monitor
the position of the detected obstacle relative to the drone,
which can help the flight control system to guide obstacle
avoidance. Another fusion of two parts of motion tracking
results is conducted through comparing whether the drone
motion relative to background is obviously different from that
relative to the obstacle, which can in return verify the obstacle
detection result that is not mislead by dynamic background
like shaking leaves. On a whole, our system excels in three
aspects:

o The tight fusion between event feature and image feature
improves the tracking accuracy in conditions where a
drone flies with relatively high velocity or flies under
poor illumination or HDR circumstances.

« A moving object detection method distinguishes obstacle
part and background part in real time, further reduces
the impact on tracking accuracy that caused by moving
objects appearing in FoV .

e A closed-loop structure is formed through a shallow
fusion of results from ego-motion tracking and obstacle
motion tracking, reducing false results provided by the
moving object detection method.

We implement FlyTracker on a commercial drone equipped
with a DAVIS and evaluate FlyTrack in various scenarios.

We also compare FlyTracker with state-of-the-art vision-based
motion 6-DoF tracking methods in terms of absolute trajectory
error and rotation error. Evaluation results show that Fly-
Tracker achieves the highest accuracy among the baselines,
indicating FlyTracker is effective and reliable to perform 6-
DoF tracking across different environments. Our contributions
are summarized as follows:

o We propose FlyTracker, which develops visual sensing
ability for drones of both individual and circumambient
location-related contextual. By equipped with an event
camera, a drone can track the 6-DoF pose of itself
and monitor surrounding moving obstacles through Fly-
Tracker.

e In FlyTracker, multilevel fusion is performed on the
heterogeneous visual data, i.e., standard image frames
and asynchronous event streams. Shallow data fusion of
output from modules is used for detection, and tight data
fusion of image features and event features is used for
tracking. The multilevel data fusion effectively improves
the accuracy and robustness of FlyTracker working in
dynamic environments.

o In FlyTracker, we take advantages of both images and
the events provided by event cameras. We propose a mo-
tion tracking method based on fusion-based photometric
features according to EGM. We also propose an online
background-subtraction-based method to quickly detect
moving obstacles that appear in the FoV.

o Evaluations are conducted in different scenarios com-
paring with the state-of-the-art vision-based methods.
Evaluation results show that FlyTracker makes high-
accuracy flight control possible for drones in dynamic
and HDR environments.

The remainder of the paper is organized as follows. We
present related work in Section II. We introduce the principle
of event cameras as well as event generation model in Sec-
tion III. Overview and detailed system design are presented in
Section IV. In Section V, we present implementation setup
and performance evaluation results. Finally, we draw our
conclusion in Section VI.

II. RELATED WORK

Image-based Methods. VO methods using image frames
captured by standard cameras have been explored for a long
time, which can be divide into indirect measurements (i.e.,
feature based VO) [11]-[13] and direct measurements [14].
Indirect methods usually depend on features like SIFT [15],
SURF [16] and BRIEF [17]. The recent ORB [18] com-
bines FAST [19] and BRIEF that uses pyramid to generate
multiscale representations, achieving great success in visual
SLAM [12], [13]. For indirect methods, varying conditions
in environments such as lighting conditions and dynamic
obstacles can impede accuracy with outliers. RANSAC is
employed by many works to circumvent the outliers. Buczko
et al. propose an outlier detection scheme for monocular and
stereoscopic [20] approaches. Direct methods are more robust
with photometric calibration while being insensitive to pixel
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discretization artefacts. SVO [21] and DSO [14] are prominent
VO algorithms that DSO uses a direct approach whereas SVO
uses a semi-direct approach. DSO also uses a sparse formula-
tion thereby decreasing computation complexity, as it samples
only points of sufficient intensity gradient, and neglecting the
geometric prior. By combining traits of direct and indirect
methods, SVO performs a minimization of photometric errors
on features of the same 3D point, where subpixel features
are subsequently obtained through the relaxation of geometric
constraints.

Event-based Methods. Image-based methods cannot track
motion in the blind time between consecutive image frames.
Some of them are high-cost since they process information
from all pixels. In contrast, event cameras capture only rele-
vant brightness information and respond asynchronously, thus,
filling the blind time between consecutive image frames. Early
event-based methods were simple and focused on demon-
strating the low-latency and low-processing requirements of
vision systems. Motions are tracked as clustered blob-like
sources of events [22], circles [23] or lines [24]. Methods of
tracking more complex or high-contrast scenery are demon-
strated by using event-by-event adaptations of the Iterative
Closest Point (ICP) algorithm [25], gradient descent [26],
Mean-shift and Monte-Carlo methods [27], or particle filtering
[28]. Similar to the method in [29], Tedaldi et al. [30] propose
features consisting of local edge patterns that are represented
as point sets. Method proposed in [31] considers events in
overlapping spatio-temporal windows and align them using the
current camera motion and scene structure, yielding motion-
compensated event frames. However, the above event-based
methods suffer from drift as event appearance changes over
time.

Fusion of Images and Events. Event streams and intensity
images are visual information with complementary sources.
Recent researches has proven that combining them is useful
to improve the accuracy and robustness in various visual appli-
cations, such as feature tracking [32], ego-motion estimation
[33], [34], depth prediction [35], video reconstruction [36],
[37] and video frame interpolation [38]. The method in [39]
is part of SLAM pipeline which uses three filters operating in
parallel to jointly estimate the motion of the event camera,
a 3D map of the scene, and an intensity image. Its depth

(a) brightness model using events

(b) predicted model using image

Fig. 2: An example of EGM output.

estimation approach requires using an additional quantity, i.e.,
the intensity image, to solve for data association. In contrast,
EMVS [40] is a space-sweep method that leverages the spar-
sity of event streams to achieve 3D reconstruction without
establishing event matches or recovering intensity images. It
projects events into space and then finds scene structure as
local maxima of ray density. The basic idea of EMVS is also
used in EVO [41]. Several fusion-based methods [32], [34],
[42] exploit EGM that states how events are created when
a predefined contrast threshold is reached. Corresponding
experiments suggest that methods applying EGM can achieve
higher accuracy than methods without EGM.

III. BACKGROUND OF EVENT-BASED VISION
A. Principle of Event Cameras

Event cameras are asynchronous sensors that pose a
paradigm shift in the way visual information is acquired.
Every pixels in an event camera respond asynchronously
and independently to brightness changes in the photographed
scene. Thus, the output of an event camera is a variable
data sequence of digital “events”. Each event represents a
predefined-magnitude change of brightness (i.e., log intensity)
at a pixel and a specific time. From the left figure of Fig.
1, we can see that standard cameras capture full images with
fixed rates (e.g., 30 fps), while event cameras output events
with different time intervals in contrast. As shown in the right
figure of Fig. 1, in the design of event cameras, each pixel
memorizes and monitors the log intensity from the time it
gives out an event. When the change of log intensity exceeds
a predefined threshold +C, the camera gives out a new event
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Fig. 3: System overview.

which has a polarity of “ON” or “OFF”, indicating the increase
or decrease of brightness, respectively.

It is obvious that event cameras are data-driven sensors
which have much potential advantages over standard cameras.
Since the generated events depend on motion or brightness
change in the scene, the faster the motion, the more events
per second are generated. In addition, events are detected
with microsecond resolution and are transmitted with sub-
millisecond latency. Therefore, event cameras can capture very
fast motions, without suffering from motion blur which is
typical to frame-based cameras. Moreover, event cameras often
have much higher dynamic range (more than 120 dB) than
frame-based cameras, enabling them to work effectively in
very dark and very bright environments.

B. Event Generation Model

An event e
(Zk, Yk, tk, pr) When it is triggered at pixel uy = (2, Y
and at time t; with polarity p, € {—1,+1}. It is generated
as soon as the brightness increment AL reaches the threshold
+C' (with C'>0), formally,

AL(ug,ty) = L(ug, tx) — L(ug, ty — Aty) = pr.C, (1)

can be represented by a quadruple
)T

where Aty is the time since the last event triggered at the
same pixel. If the time interval AT = ¢y, — ¢; is much
small, the brightness increment (1) can be approximated
using Taylor’s expansion by AL(ug,tr) =~ %(uk,tk)Atk,
which interprets the events as providing information about the

temporal derivative:

2 i) ~ %- 2)
This is an indirect way of measuring brightness, since events
are triggered by brightness change, rather than the brightness
derivative exceeding a threshold. However, The above interpre-
tation inspires us to design physically-grounded event-based
algorithms.
Accumulating the polarities of events {e; }n<, with a quan-
tity of N, over a time interval A7 produces a brightness
increment image AL(u):

AL(u) = Z prCo(u — ug), 3)
th EAT

where 6(-) is the Kronecker delta function used to select
appropriate pixels. For small A7 and given the brightness

constancy assumption that usually used in optical flow, it is
intuitive that AL(u) is caused by moving edges. In other
words, the brightness increments are caused by brightness
gradients VL(u) = (%, %)T moving with velocity V (u)
over a displacement AU = V(u)A7 on the image plane.
Formally,

AL(u) = =VL(u) - AU = =VL(u) - V(u)Ar. (4)

We next denote —V L(u) -V (u)A7 as L(u) in the subsequent
content to represent a predicted brightness increment model.
From this predicted model we can find that if the motion
is parallel to the edge (i.e., V(u) | VL(u)), the increment
vanishes and no events are generated. And if the motion is
perpendicular to the edge (i.e., V(u)LVL(u)), the camera
generates events at the highest rate. Fig. 2 presents an example
of EGM output with positive brightness changes showing as
white and negative ones showing as black.

IV. SYSTEM DESIGN
A. System Overview

Fig. 3 shows the overview of FlyTracker. The main target
of FlyTracker is to track the ego motion of a drone as well
as continuously detect relative positions of moving obstacles
that appear in FoV by using a monocular event camera carried
by the drone. At first, images are sent to the moving object
detection module. In this module, an online background-
subtraction-based method is used to detection whether there
is any moving obstacle appearing in the FoV of the drone.
Once a moving obstacle is found by FlyTracker, a mask of
this moving object is calculated to distinguish it from the
background part on the image plane. With the mask, images
and events are divided into background parts and foreground
parts. The background parts are then sent to the ego-motion
tracking module. In this module, photometric features based on
EGM are first extracted and then used to calculate brightness
increment errors. Next, camera pose changes are estimated by
minimizing the errors. Finally, through back-end optimization,
the ego-motion tracking module outputs optimized camera
poses as well as an estimated depth map. At the same time,
the foreground parts are sent to the moving obstacles tracking
module. Same photometric features are extracted and camera
pose changes relative to the obstacle are estimated. By an
invertion operation, the positions of the obstacle relative to
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the drone are obtained. The camera poses changes calculated
from the two tracking module are compared to eliminate false
results outputting from the detection module. It should be
noted that if no moving obstacle is detected, only the drone’s
6-DoF poses is tracked. We test FlyTracker in scenarios with
one moving obstacle each time due to the limited resolution
of our event camera. Theoretically, if there appears multiple
moving obstacles, multiple masks will be generated and dif-
ferent foreground parts are then processed separately.

B. Moving Obstacle Detection

Moving obstacle detection is the first step for a drone
to avoid flight risks like crushing or tumbling. Considering
the fast flight speed of drones, a mechanism that can detect
surrounding moving objects in real time is much important
for drones. Comparing with classification methods with pre-
training operations, background subtraction, which is one of
the basic tasks in visual processing, is lightweight and useful
to narrowing down the searching range for object detec-
tion, recognition and tracking. Thus, an online background-
subtraction-based method for moving obstacle detection is first
proposed in our system. Fig. 4 shows the workflow of the
online background-subtraction-based method. The proposed
method mainly consists of three steps, which are motion com-
pensation, background modeling and background subtraction.

Motion Compensation. The goal of this step is to estimate
the homography matrix between a frame and its previous
frame. We denote the current frame as X, generated at time
t and its previous frame as X;_;. The homography matrix
between them is denoted as H. We first extract key points of
X,;_1. Specifically, the image of X,_; is averagely divided
with m grids, and the vertexes of each grid are selected as
key points. Noted that the amount of grids should keep a
trade-off between accuracy and computational complexity of
homography matrix estimation. With the key points of X;_1,
then, three-layer Lucas-Kanade optical flow is calculated to
find the corresponding points in frame X;. Thus, H can be
calculated robustly by OpenCV. Finally, we align X;_; with
X, as X, by using H.

Background Modeling. We propose a practical background
model, denoted as M to perform background subtraction. We
also propose a supplementary background model, denoted as
M, to evaluate whether an image pixel u is stable enough
for background based on its supplementary age c,. At the

beginning, M and M are both set uninitialized. The process
of background modeling can be divided into three steps.

« Initialization: Each pixels v in M is set as the corre-
sponding pixel in the first frame X, which is M (u) =
X1 (u). Also, the supplementary age o, of each M (u)
is set to 0 and will increase according to some con-
ditions. Once «,, is larger than a threshold 6,, we set
M (u) = M(u) and o, is reset to 0.

« Updating: When a new frame X appears, similarities be-
tween M, (u), M, (u) and X (u) comparing with a thresh-
old 6, is measured. Specifically, whenever | X;(u) —
M, (u)||<6p, then M;(u) is updated by a learning rate .
Formally, M;(u) = (1 — )M;_1(u) + 8X;(uw). When
the condition of M;(u) is not met, we next measure
whether || X, (u)— M;(u)]| is smaller than 6,. If || X, (u)—
M, (u)||<6,,we set My(u) = X;(u) and increase a,, with
a unit value. Otherwise, we set X, (u) = M, (u). It should
noted that whenever o, >0, M(u) is copied to M (u)
and «,, is reset to 0.

o Warpping: The background model M;(u) and supple-
mentary background model Mf(u) are transferred by
using the homography matrix H.

o Repeating: The second and third steps are repeated until
the end of video shoot.

Background Subtraction. With a given segmentation
threshold 6, background subtraction is carried out pixel by
pixel to obtain masks of moving objects. Formally,

Lo IX(w) — M(u)]| > 6,
0, otherwise

Mask(u) = { ®)
Finally, a simple median filter is used to smooth the mask.
Through the above process, moving obstacles that appear in
the FoV of the drone can be quickly detect and distinguished
from static background on the image plane.

C. Ego-motion Tracking

In the process of ego-motion tracking, FlyTracker only
focuses on the image part of static background and events
that occur in background areas. Fig. 5 shows the workflow
of ego-motion tracking module. To initialize this module, we
apply eight-point algorithm, which is classical algorithm in
multiview geometry model, on the beginning several image
frames until accumulating enough parallax. Once initialization
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is successful, these image frames become keyframes and camera and the scene be described by
map points are generated. Then, Bundle Adjustment (BA) dU
is performed on the keyframes to refine the map. We select — = —w)U(t) —v(t) (6)
dt ’

median depth to normalize the scale since it is known that scale
in monocular visual odometry is arbitrary. After initializing the
module, photometric features of images and events are deeply
fused to estimate camera poses.

Extracting Event Feature. Events with a quantity of N,
are first accumulated to build an event frame (i.e., brightness
increment image AL(u)). N, should be selected carefully as
a small N, can not provide sufficient SNR while a large N,
may introduce much accumulation blur. In practice, FlyTracker
enhances the event frames by selecting slightly large N,
that ensures high SNR and then weighting the polarities of
each event to decrease accumulation blur. That is, AL(u) =
ZtkeAT wiprCé(u — uy) and wy subjects to a Gaussian
distribution with expectation of %AT. Thus, we obtain the
photometric feature AL(u) of events which is also named
brightness increment model in EGM.

Extracting Image Feature. According to EGM, brightness
increments are caused by moving edges. So image contours
are selected for brightness increment prediction. Specifically,
an image frame is first enhanced by logarithmic transformation
and normalization. Then, brightness gradient of the image
is calculated. Next, we select 20% pixels with the largest
brightness gradient in randomly divided and nonoverlapping
areas, which are more likely belong to contours. If given
predicted pixel velocities (i.e., optical flow) to the selected key
points, FlyTracker obtains a predicted brightness increment
model AL(u), which can be fused with brightness increment
model to estimate camera pose changes.

Camera Pose Estimation. The pixel velocity V (u) of each
key point is related to the camera’s linear velocity v and
angular velocity w, denoted by a 1 x 6 vector £ = (v ,w')T
for convenience, and further related to camera pose change
AT. According to pinhole camera model, a 3D point U =
(Uz, Uy, Ug) T is mapped into a image point u = (uz,u,)"
described by u = w(U), where Uy is scene depth and = is the
camera intrinsic. Let the relative motion between the viewing

where @ is the cross-product matrix of w. Giving the corre-
sponding point depth d,,, the relationship between the pixel
velocity and the camera velocity is
V(u) = J(u, du)S, (7

where J(u,d,,) is the 2 x 6 image Jacobian matrix:
—1—u2
—Ugly — —Ug|

)

By combining (7) and (4), we get a predicted brightness
increment model as

—d;! 0
0 —dy?

—1
Ugdy,
uydy !

Uz Uy

J(U,du) - 1+ui

AL(u) = =V L(u) - J(u,d,)EAT. 9)

It is worth noting that camera pose 71" and camera velocity £ are
global quantities shared by all image pixels u. With brightness
gradients VL(u) and depth information d,, known (after the
depth map is initialized), we cast the camera pose estimation
problem as a joint optimization by minimize the difference
between the brightness increment model (which comes from
events) and the predicted brightness increment model (which
comes from images). Formally,

AL AL
min — — , (10)
ATE|| ALl ALz,
where || - || is Huber norm. Finally, we use Ceres solver to

minimize the above joint optimization and get the camera pose
changes relating to each event frame. We denote the camera
pose changes of each event frame as delta camera pose in this
paper.

Back-end Optimization. Back-end optimization of camera
poses and depth map is designed at the back end through
using keyframes of images. After the initialization of the
ego-motion tracking module, a keyframe is created when the
selected key points decrease over 30% that may due to moving
forward or rotation. FlyTracker keeps a sliding window with
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TABLE I: Evaluation Scenarios

Scenario Name  Scenario Type  Ground Truth Source

Description

Desk static OptiTrack
Office static OptiTrack
Building static RGBD Camera
Atrium simulated simulated
Reader Moving dynamic OptiTrack
Day Flying dynamic RGBD Camera
Night Flying dynamic RGBD Camera

a desk with books, pens and a monitor
a typical office room
building channels with some weak-texture walls and doors
simulate an ancient architecture by ESIM [43]
a person is moving in an office room
outdoor with moving cars and tested obstacles
outdoor with tested obstacles in low light

5 keyframes. For the keyframes in the sliding window, non-
linear optimization is performed through Photometric Bundle
Adjustment (PBA), which is usually used in direct methods
of visual odometry. Specifically, let the photometric error of
a point u in reference image frame KC; observed in a target
frame C; be defined as:

) — Kz, ()

By = H/cii (u , (11

’

where Kj ~and K i represent the point brightness in X; and
K, respectlvely Also v’ stands for the projected point in /C;
of w. It should be noted that the projection depends on (1) the
point’s depth d,,, (2) the camera intrinsics 7, and the camera
pose change T;j involved with KC; and KC;. Thus, PBA is to
minimize full photometric error over all keyframes and key
points to optimize camera poses and the depth map, that is

minzz Z E.;.

i€K uEN, jeobs(u)

12)

In the objective function, ¢ runs over all keyframes in the
sliding window K, w runs over all selected key points N, in
keyframe K;, and j runs over all keyframes obs(u) in which
u 1is visible. PBA can also be implemented by using Ceres
solver.

D. Moving Obstacle Tracking.

The basic idea of the moving obstacle tracking module
is similar to that of ego-motion tracking module. FlyTracker
focuses on the foreground parts of images and events in this
module. First, photometric features of image and events are
extracted according to EGM. Then, delta camera poses relative
to the moving obstacle are calculated like the same process
in ego-motion tracking module. Next, FlyTracker inverses the
delta camera poses to get the obstacle pose changes relative
to the camera. Considering that the moving object may not be
a rigid body, we only track the obstacle’s position relative to
the camera while discarding orientation information. Module
initialization is carried out at the phase of detecting moving
objects and no back-end optimization is designed in this
module. In order to eliminate false detection results outputting
from the moving object detection module, we compare the
camera traces in the same duration that calculated from the
above tracking module. The detection results are verified true
if the two traces are obviously different.

DAVIS 346s

Intel D4351 RGBD Camera

(a) drone with cameras (b) motion capture system

Fig. 6: Experiment devices.

V. IMPLEMENTATION AND EVALUATION

A. Evaluation Setup

Data Collection. We evaluate FlyTracker in different envi-
ronments including static scenarios (with no moving object)
and dynamic scenarios (with moving objects or HDR scenar-
i0s). Visual data are collected with a stereo DAVIS 346 carried
by an AMOV-P450 drone, and ground truth are collected by
a motion capture system with four OptiTrack cameras and
an Intel D435i RGB-Depth-Camera. Evaluation scenarios are
summarized in Table I and experiment devices are shown in
Fig. 6.

Baseline Methods. We compare FlyTracker with image-
only, event-only and information-fused VO methods. Three
baselines are selected which are ORB-SLAM, DSO, and
USLAM.

e« ORB-SLAM [12] is the best-known image-based and
indirect visual SLAM system that depends on ORB
features. We implement the monocular VO part of ORB-
SLAM, which mainly includes its tracking module and
local mapping module.

o DSO [14] is an image-based and direct monocular VO
method. It combines a fully direct probabilistic model
with consistent and joint optimization of model param-
eters such as inverse depth and camera motion. That is,
the basic idea of DSO is to estimate camera motion by
minimizing photometric errors between keyframes.

e« USLAM [33] is an indirect monocular SLAM pipeline
that combines events, images and IMU measurements. It
treats event frames as normal images and tracks FAST
corners separately on event frames and image frames.

o FlyTracker create an event frame using 20k events in the
ego-motion tracking module and using 5k events in the
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moving obstacle tracking module. Each event frame has
50% events overlapping with its previous or next event
frame. Images are generated at a fixed rate of 30fps.
Other parameters are set with m = 1024, 5 =0.8, 6, =
15, 8, = 18 and 65 = 50.

Evaluation Metrics. FlyTracker and baselines are evaluated
by two standard metrics: Root Mean Square (RMS) of Abso-
lute Trajectory Error (ATE) and RMS of Rotation Error (RE).
Monocular methods are operated with a scale transformation to
get estimated absolute trajectory and tested using data from the
left camera. Each absolute trajectory error and rotation error
are calculated by comparing the estimated poses of keyframes
and the ground truth.

B. Overall Performance

Fig. 7 shows the overall performance of FlyTracker com-
pared with the three baselines. The average RMS of ATE
under three static scenarios and three dynamic scenarios, as
well as RMS of ATE from the simulated visual data are
presented in the figure, respectively. From the figure, it can
be seen that FlyTracker outperforms the three baselines in all
tested scenarios. ATEs of all methods in dynamic scenarios
are much higher than those in static scenarios, suggesting that
dynamic scenarios are always challenging for vision-based
tracking solutions. However, FlyTracker also has the lowest
ATE in dynamic scenarios among baselines, indicating that
the multilevel fusion method of FlyTracker can effectively
improve tracking accuracy in different environments. Though
USLAM fuses with the most sensors, its performance is not
desirable since the data association problem it has addressed is
a much challenging problem for feature-based methods. This

42 586 T.
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Fig. 11: ATE with flight velocities.
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Fig. 12: ATE of obstacle motion track-
ing.

is because each event carries little information and it is hard
to identify which events are triggered by the same scene point.
DSO performs better than both ORB-SLAM and USLAM for
it can work relatively reliably in scenarios lacking corners or
with many weak-texture areas, where is not friendly to feature-
based methods. When the illumination in a scenario changes
fast or the captured images are obvious blur, the tracking
accuracy of DSO will also decrease.

Then, we compare FlyTracker with baselines in dynamic
scenarios, including indoor environment with moving objects,
outdoor environment with moving objects and weak lighting
environment. Fig. 8 and Fig. 9 show the evaluation results in
terms of ATE and RE, respectively. In general, FlyTracker
outperforms the baseline in all scenarios. Obviously, poor
illumination has the most impact on motion tracking, since
the image quality decrease a lot under this condition. The
brightness gradients become indistinct and may disappear
in some areas, which makes the quantity of selected key
points decrease for FlyTracker and further decrease tracking
accuracy. However, FlyTracker has ATE lower by 16.0%, 7.8%
and 26.9%, and RE lower by 12.4%, 43.3% and 65.5% than
ORB-SLAM, DSO and USLAM in the night flying scenario,
respectively.

Considering that high motion speed of the camera usually
makes the scenery captured in images largely apart, we com-
pare motion tracking accuracy of the baselines when image
frames are more different with each other. The comparison
is performed through decreasing the frame rate of visual data
collected in the office room. Evaluation results are shown in
Fig. 10. It can be seen from the figure that tracking accuracy of
all methods decreases with the decrease of image frame rate.
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Specifically, The ATE of FlyTracker is 2.1cm at 30fps and
increases to 5.7cm when frame rate decreases to 5 fps, which
is still higher than those of baselines at 5fps. It is because
for FlyTracker, events are largely generated between image
frame, making the photometric features still can be tracked in
the blind time between image frames.

C. Robustness Study

We conduct a evaluation in a static outdoor environment to
study the impact of drone flight velocity on the performance
of motion tracking. Fig. 11 shows the RMS of ATE under
different drone flight velocities. It is demonstrated that tracking
accuracy decreases with the increase of flight velocity. The
RMS of ATE is 5.3¢m at 8.3cm/s, which is higher by 83%
than the ATE at 2.8cm/s. However, the tracking performance
can still satisfy plenty of applications.

In addition, we study the performance of motion tracking for
moving obstacles. Four typical obstacles are selected, which
are a moving car, a walking person, a flying bottle thrown
by people and a rolling basketball. RMS of ATE for obstacle
tracking is evaluated when they move with a relatively slow
speed and a relatively fast speed (but not same for different
kinds of obstacle). Evaluation is conducted in the same outdoor
environment and the results are shown in Fig. 12. As a whole,
tracking accuracy is higher when the obstacle moves at a fast
speed than that at a slow speed. Tracking accuracy of the
moving car is the lowest since the distance between the car
and the drone is the farthest, that brings slightly higher error
in depth estimation. Tracking the walking person achieves the
highest accuracy. The reason may that the walking person
occupies a large area in FoV, and the abounding texture of
the person produces evident brightness gradients.

D. Module Study

We compare FlyTracker with baselines in static scenarios,
in which there is no effect of moving obstacle. Fig. 13 and Fig.
14 show the RMS of ATE and RE under four static scenarios,
respectively. We can see that FlyTracker outperforms the
baselines under the four scenarios both in terms of trace
estimation and rotation estimation. The ATE of FlyTracker is
1.5¢m in building scenario, which is lower by 60.5%, 69.4%
and 82.9% than ORB-SLAM, DSO and USLAM, respectively.

Fig. 14: RE under static scenarios.

detection.

The performance of FlyTracker benefits from the advantage of
tight fusion of events and images.

Finally, we study whether the moving obstacle detection
affect the motion tracking accuracy. Evaluation is conducted
in a scenario with a walking person, a moving car and a rolling
basketball, and FlyTracker perform motion tracking with and
without the moving obstacle detection module. Fig. 15 shows
that tracking ATE is lower with the detection module than that
without the detection module in all conditions, demonstrating
that the detection module does improves tracking accuracy for
FlyTracker. The improvement with a moving car is smaller
than that with a walking person and a rolling ball, as the car
is the smallest in the FoV of the drone.

VI. CONCLUSION

This paper proposes the design and implementation of Fly-
Tracker, a 6-DoF pose tracking system for drone flight control
to work in challenging scenarios. FlyTracker exploits the idea
of event generation model and further design an accurate mo-
tion tracking method by tightly fusion event feature and image
feature. To reduce the impact of moving objects on tracking
accuracy, a real-time method for moving object detection
is proposed to distinguish foreground and background part.
Extensive evaluations are conducted in real environment, and
the results show that FlyTracker can effectively and reliably
track the 6-DoF pose of the drone as well as monitor relative
positions of moving obstacles across various scenarios.

The main limitation of our work is the time consumption
that FlyTracker performs motion tracking. Though the moving
obstacle detection is real time and tracking the motion of
obstacles is very fast, FlyTracker is not a real time motion
tracking system due to the large number of parameters used
in back-end optimization. In our future work, we will com-
bine the FlyTracker with an edge framework, leveraging the
computation ability of edge server to speed up the process of
motion tracking of FlyTracker.
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