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Abstract—Drones have demonstrated their pivotal role in
various applications such as search-and-rescue, smart logistics,
and industrial inspection, with accurate localization playing an
indispensable part. However, in high dynamic range and rapid
motion scenarios, traditional visual sensors often face challenges
in pose estimation. Event cameras, with their high temporal
resolution, present a fresh opportunity for perception in such
challenging environments. Current efforts resort to event-visual
fusion to enhance the drone’s sensing capability. Yet, the lack
of efficient event-visual fusion algorithms and corresponding
acceleration hardware causes the potential of event cameras to
remain underutilized. In this paper, we introduce EventBoost,
an acceleration platform designed for drone-based applications
with event-image fusion. We propose a suit of novel algorithms
through software-hardware co-design on Zynq SoC, aimed at
enhancing real-time localization precision and speed. EventBoost
achieves enhanced visual fusion precision and markedly ele-
vated processing efficiency. The performance comparison with
two state-of-the-art systems shows EventBoost achieves 24.33%
improvement in accuracy with 30 ms latency on resource-
constrained platforms.

Index Terms—Sensor fusion, event camera, hardware acceler-
ation, mobile sensing

I. INTRODUCTION

Given their flexibility and versatility, Unmanned Aerial
Vehicles (UAVs) have become instrumental in various pro-
ductive and life-saving operations [1]–[3]. Nowadays, UAVs
are particularly crucial in challenging missions such as disaster
recovery site surveys [4], mine explorations [5], and expansive
surveillance of major transportation arteries [6], playing a
critical role in protecting life and property.

However, the unique conditions where these missions take
place pose distinct challenges to the conventional vision sen-
sors on UAVs, including those equipped with higher framerate
cameras. Specifically, they frequently encounter difficulties
like overexposure, underexposure, handling high dynamic
range (HDR [7]) environments, and dealing with motion
blur [8]. These drawbacks hinder the accuracy and real-time
performance of several fundamental UAV modules, such as
self-localization, mapping, and obstacle avoidance [9]–[13].

Event cameras, new visual sensors that asynchronously
record changes in pixel-level brightness, have attracted interest
in academia and industry [14]. With a high sampling rate,
low power use, and high dynamic range, event cameras have
complementary advantages and show promise for complex
tasks, e.g., high-speed SLAM [15], motion tracking with HDR
lighting [16], and fast obstacle avoidance [17].

� Jingao Xu is the corresponding author.

By fully embracing the new advantages brought by event
cameras, current innovations explore the fusion of event
cameras and frame-based cameras for enhancing drone-based
applications in challenging scenarios [18]. Existing event-
frame fusion frameworks can be categorized into two aspects:

(i) Frame-interpolation-based solutions [19] work by accu-
mulating event data, say every 5ms time-window, into virtual
frames. These frames are then added to the original sequence
of images taken by the camera. This process aims to increase
the frame rate, which helps handle rapidly changing scenes.

(ii) Optimization-based solutions [20], [21] typically combine
accumulated event data with video frames through motion and
image models for joint optimization.

Despite the promising results of event-visual fusion algo-
rithms, we observe several challenges when deploying them
to more complex and dynamic real-world environments:

• Image Over-reliance Hinders Precision. Current event-
visual fusion methods rely heavily on image data. That is,
although mainstream state-of-the-art (SOTA) systems [19],
[21] each have distinct processing strategies, they commonly
emphasize image frames over events. This underutilizes the
innate advantages of events, restricting algorithms within the
standard dynamic range (SDR), exposure time, and low frame
rate of conventional sensor images. Consequently, the natural
merits of event cameras are sacrificed.

• Hardware-Inefficiency Exacerbates Processing Latency.
Present-day hardware demonstrates considerable inefficiency
in handling tasks related to event-image fusion. When these
systems operate on CPUs, the simultaneous processing of
events and images is impeded by context-switching interfer-
ence, resulting in a substantial decline in event throughput.
While GPUs are highly competent in managing conventional
vision tasks [22], [23], they lack proficiency in dealing with
the asynchronous, high-frequency stream of event data. On the
other hand, FPGAs offer improvements in processing either
images [24] or events [25] in isolation; however, they fall
short in providing a comprehensive optimization across the
entire fusion pipeline.

Remark: In summary, the lack of software algorithm and
hardware platform support for event-image fusion results in
a compromise on the overall system efficiency and accuracy,
posing significant drawbacks for real-time drone-based appli-
cations in challenging scenarios.

Our work. To tackle the above challenges, we propose Event-
Boost, an acceleration platform designed for event-visual-
fusion-based tasks. The design and implementation of Event-
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Boost follow a software-hardware co-design paradigm, making
EventBoost achieve better system accuracy and efficiency.
On the one hand, we design specialized algorithms aimed
at augmenting the fusion of event and image; On the other
hand, we develop dedicated hardware based on commercial
Zynq systems-on-chip (SoCs) [26], [27] to accelerate the pro-
posed whole software stack. Benefiting from EventBoost, UAV
tasks like real-time localization, detection, and perception in
challenging scenarios can be efficiently accomplished. Overall,
our design excels in the following two aspects, spanning both
software and hardware layer:

• On the algorithm side, we introduce a bimodal enhancement
strategy, which not only efficiently fuses the complementary
strengths of events and images, but also compensates for
their limitations, significantly improving dual-modal feature
utilization. Building upon it, the Hierarchical Pose Estimation
strategy further reduces reliance on traditional images and
better unleashes the potential of event cameras. Through
the hierarchical solving structure, it estimates the pose from
coarse to fine and effectively reuses prior computational re-
sults. Together, the two strategies break away from the over-
dependency on images while ensuring in-depth integration
between the modalities, achieving markedly improved overall
accuracy.

• On the hardware side, we propose a hardware-accelerated
Image-aided Event Pose Tracker, which combines both modal-
ities to optimize event feature extraction and noise filtering
while enhancing feature stability. Besides, our proposed Fu-
sion Optimization Processor introduces a modularized pro-
cessing approach for event-visual fusion, which considerably
minimizes hardware resource demands, elevates processing
parallelism, and trims data transfer latencies. This method
partitions the fusion problem into manageable segments, opti-
mizing each independently while maintaining a global context.
Finally, through the software-hardware co-design paradigm,
we ensure the algorithms can run in real-time with low power
on resource-constrained mobile platforms.

We implement EventBoost and deploy it on a UAV testbed
for evaluation. Extensive experiments were conducted, includ-
ing public datasets with extreme scene datasets as well as our
self-collected dynamic and HDR datasets. We benchmark the
localization and mapping accuracy and latency of our system
against two state-of-the-art systems. The results demonstrate
that EventBoost surpasses the accuracy of state-of-the-art
system 24.33% while achieving 30 ms latency, reaching the
goal of real-time on resource-constrained platforms. To further
showcase the real-world application effects of our accelerated
platform, we integrated our system with ArduPilot, an open-
source flight control system, and executed application case
studies, encompassing detection, and obstacle avoidance. In
all real-world use cases, EventBoost exhibited excellent per-
formance, proving its efficacy and reliability.

In summary, the main contributions of this work are:

(1) We perform an in-depth analysis of current event-visual
fusion algorithms and systematically identified their primary
limitations, tracing the root causes, which lie in flawed algo-
rithm design and insufficient hardware efficiency.

(2) We propose a tailored acceleration platform for event-
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Fig. 1. (a) Illustration of event stream. (b) Illustration of event generation.

visual fusion, comprising both accurate and robust fusion
algorithms, as well as real-time, low-power hardware design.
To our best knowledge, this is the first hardware acceleration
platform for optimization-based event-visual fusion.
(3) We fully implement the EventBoost acceleration platform
through a software-hardware co-design strategy and evaluate
its capabilities with extensive experiments and case studies.
Comparisons with SOTA systems and real-world case studies
demonstrate the significant advantages and immense applica-
tion potential of our proposed platform.

II. BACKGROUND AND MOTIVATION

A. Principle of Event Cameras

Event cameras are bio-inspired sensors that work differ-
ently from traditional frame-based counterparts. As shown
in Fig. 1a, unlike conventional cameras that capture images
at fixed time intervals, event cameras record asynchronous
changes in pixel brightness, resulting in a stream of events
at microsecond resolution [14]. The minimum sensing unit
of event cameras is still pixels, but each pixel perceives
independently. Once a pixel detects a predefined-magnitude
change of intensity (i.e., log intensity) in the scene, it will
instantly output an event ek = (x, tk, pk), encoding the
occurrence time tk (at microsecond resolution), pixel location
x = (u, v)T , and polarity pk (+1 for brighter and -1 for darker)
of the intensity changes.

Different from traditional cameras that capture the entire
scene at a fixed rate (typically 30Hz), event cameras only
respond to pixel-level intensity changes. When the change of
the log intensity of a pixel exceeds a predefined threshold
±C (illustrated in Fig. 1b), an event will be generated which
contains the polarity of the change, indicating whether the
pixel becomes brighter (ON event) or darker (OFF event).

Besides, owing to the event cameras’ intrinsic ability to
capture the intensity changes on a log scale, they exhibit an
extensive dynamic range (up to 120 dB). Consequently, they
can discern details spanning from extremely bright to deep
dark.

B. Event-Visual Fusing Pose Tracking

Event cameras and frame cameras provide complemen-
tary information. While event cameras capture instantaneous
changes with high contrast, traditional cameras record the
overall scene information. By combining data from these two
sources, researchers have found that the accuracy and robust-
ness of various visual tasks can be significantly enhanced [19],
[20], [28]. Exciting fusion frameworks can be categorized into
two aspects: (i) Frame-interpolation-based solutions work by
predicting or supplementing frame data using event data. By
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adding this event information, they try to create more detailed
or frequent frames. However, these methods are limited in
accuracy because they discard the event information and rely
on the quality of the interpolated frames. (ii) Optimization-
based solutions work by minimizing the photometric errors
between events and their frame predictions [20], [21]. This
approach is more accurate than the frame-interpolation-based
solutions, but it is computationally expensive and not suitable
for real-time applications. Additionally, since it relies on image
frames as references to minimize, the quality of images could
significantly impact the precision of motion estimation.

C. Hardware Acceleration for Event-Visual Fusing
Recently, event cameras have gained significant attention

for their potential in low-power applications [29], [30]. While
numerous studies have aimed at speeding up the processing of
either event data or visual data [31]–[33], there remains a gap
in the joint processing of both. Some research has successfully
accelerated the processing of event or visual data individually,
achieving certain advancements in their respective domains.
However, when considering the combined processing of event
and visual data, the performance of these acceleration tech-
niques seems limited, failing to leverage the complementary
nature of both. A more pressing challenge is the current lack
of studies specifically targeting the acceleration of optimized
event-visual fusion strategies. Although FPGA acceleration
techniques based on least squares optimization have been
applied in visual data processing [34], [35], the vast amount
of data involved in event-visual fusion, compared to the
sparse feature points of vision-based solutions, presents new
challenges for these methods.

D. Limitations of Existing Approaches
Event-based cameras offer exciting potential for drone lo-

calization and tracking tasks. Yet, many techniques, while
effective in normal settings, face challenges in real-world
conditions. Through our analysis of existing methods, we
identify the following limitations:
• Image Over-reliance Hinders Precision. Existing event-
visual fusion methods often lean heavily on traditional image
data, which tends to overlook the unique benefits of event
cameras. Algorithms tailored to the standard dynamic range,
exposure time, and frame rate of conventional sensors miss the
opportunity to fully tap into the distinct advantages of event
cameras, especially in challenging environments dominated
by rapid intensity changes and subtle motions. This bias has
overshadowed the genuine prowess of events. Event-driven
data, when used properly, can be very effective. However, these
event-only strategies suffer from accumulated errors over an
extended period. How to effectively fuse event and visual data
to achieve the best of both worlds remains a challenge.
• Hardware-Inefficiency Exacerbates Processing Latency.

Within the optimization-based solutions, the most signifi-
cant computational load stems from minimizing the photomet-
ric errors between event predictions and actual frames. Regret-
tably, there are no dedicated hardware acceleration schemes
currently in place explicitly designed for this core task. As a
result, the efficiency of the overarching fusion strategy remains
suboptimal, failing to truly elevate the system’s capabilities to

new heights. The lack of holistic hardware solutions tailored
to the specific computational requirements of the event-visual
method currently impedes seamless and efficient integration
of event and visual data, resulting in performance bottlenecks
and suboptimal system efficiency.

In summary, although event cameras hold great potential
for tasks such as drone localization and tracking in challenging
areas, there still lack effective algorithms and hardware support
to fully unleash their potential. In this work, we aim to
overcome the above two challenges by proposing an algorithm
pipeline and a software-hardware co-design accelerator.

III. SYSTEM OVERVIEW

To solve the challenges highlighted in the previous sections,
we introduce EventBoost: a cutting-edge event-based acceler-
ation platform for real-time drone localization and tracking.
As illustrated in Fig. 2, we detail its primary modules:

High level tasks

4 Dual-Phase Event-Visual Pose Tracker

5 Event-Visual Fusion Accelerator

Bimodal Fusion Augmentation

Image-aided Event 
Pose Tracker

Fusion Optimization 
Processor

Pose

Events & Imageg

Hierarchical Pose Estimation
Coarse Estimation Fine Estimation

Fig. 2. EventBoost architecture.

• Dual-Phase Event-Visual Pose Tracker: as the primary
tracking module of EventBoost, it not only precisely fuses
event data and image data but is also designed for the
computational-constrained embedded platforms. This module
includes several hardware-friendly strategies to conserve com-
putational resources, ensuring real-time and efficient pose
estimation across complex environments.
• Event-Visual Fusion Accelerator: as a cornerstone of the
EventBoost platform, this module handles the processing of
event and image data. By using the mid-stage results from
both event and image data to speed up their processing.
Further, it is also designed for accelerating the optimization-
based fusion framework, facilitating the processing of the most
computationally demanding tasks.

The synergy between EventBoost’s two core modules cre-
ates a comprehensive solution that fully utilizes the capabilities
of event cameras. The goal of EventBoost is to provide accu-
rate drone localization and tracking to serve various upper-
layer applications.

IV. DUAL-PHASE EVENT-VISUAL POSE TRACKER

We propose a novel algorithm named Dual-Phase Event-
Visual Pose Tracker that fully leverages the high temporal
resolution of event data and high spatial resolution visual
data. The algorithm shares a similar pipeline with traditional
optimization-based fusion methods. Our system embodies the
concept of bimodal complementary augmentation, where each
modality augments the other’s shortcomings. In the following
sections, we elaborate on the workflow of our algorithm, as
well as the two core modules that drive its performance.
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Fig. 3. Workflow of Dual-Phase Event-Visual Pose Tracker

A. Algorithm Workflow

Fig. 3 illustrates the workflow of Dual-Phase Event-Visual
Pose Tracker. Our algorithm starts by receiving both event
and image data as inputs. These two types of data are pre-
processed separately to augment their quality and accuracy.
And then fused to get the pose. The processing workflow is
as follows:

• Image: We first extract the FAST features [36] of the
image, which will be preparing for subsequent mapping and
assisting in event filtering, as detailed in Section IV-B. Af-
ter undergoing processes such as gradient computation, the
image is partitioned into N × N blocks (N = 8 in our
settings). Among these, blocks with no dynamic objects will
be adaptively selected for the next processing. Following this,
an image brightness increment model is employed to predict
intensity changes in these chosen blocks. Once these steps
are completed, the selected blocks are fused with accumulated
event data.

• Event: The event data is initially directed to a time sur-
face [14] update for feature detection and tracking phase, from
which we extract condensed representations from events and
capitalize on them for coarse pose estimation. Concurrently,
based on the estimated pose, dynamic areas within the scene
are masked. This mask aids in the adaptive block selection for
images, as elaborated in Section IV-B. Subsequently, events
are accumulated to generate an event frame that will later be
integrated with images.

• Event-Image Fusion: Once we have acquired the accumu-
lated event frame and the selected image blocks, we integrate
the bimodal data and precisely estimate the pose(as detailed
in Section IV-C).

Throughout the algorithm workflow, two core modules
play a pivotal role in determining the performance of the
approach, which are: (i) Bimodal Fusion Augmentation, and
(ii) Hierarchical Pose Estimation. The following parts delve
deeper into these three modules.

B. Bimodal Fusion Augmentation

Event and image data synergistically enhance pose esti-
mation: event data provides high temporal resolution, filling
in image data’s temporal gaps, while image data offers de-
tailed spatial resolution and brightness, balancing event data’s
limitations. Our fusion approach leverages both for improved
accuracy and robustness.

Image-Augmented Event Feature Detection. Event-driven
data inherently struggles with noise interference, complicating
the extraction of precise feature points, particularly in dynamic
scenarios. On the other hand, visual data, with its clear spatial
detail and absolute intensity, facilitates the extraction of high-
quality, stable feature points, which are crucial for accurately
tracking the more variable event data.

Motivated by this observation, we propose a strategy
wherein feature points extracted from the visual data are
delineated as “trust regions”, providing a robust reference for
the event data. Specifically, events located within a distance
k of these trust regions are more likely to represent genuine
scene dynamics than mere noise or false-positive events, due
to their close association with the visual feature points. To
harness this advantage, we assign higher weights to these
events during the event feature point extraction phase. Our
weight assignment strategy can be mathematically articulated
as:

W (ek) =

{
1 + ‖x−c‖1

k , if ‖x− c‖1 ≤ k

1, if ‖x− c‖1 > k

where ek = (x, tk, pk) and W (ek) denotes the weight of
event ek, c represents the position of the proximate visual
feature point, and ‖ · ‖1 signifies the L1 norm. The weight is
maximized when the event’s distance to the feature point is
zero and minimized when the distance equals k. This paradigm
is designed for hardware implementations like FPGA.

Events-Augmented Adaptive Block Selection. Traditional
image data, with its discrete temporal nature, finds it difficult
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to capture continuous changes in dynamic scenes, particularly
for fast-moving objects. Event cameras, however, excel in
detecting minute dynamic changes, effectively differentiating
moving objects from static backgrounds.

To address these issues, we present a method that utilizes
event data to enhance dynamic region masking in images. As
detailed in Algorithm 1, we first extract feature points from
event data and compute the optical flow. Using the RANSAC
algorithm [37], we then deduce scene pose changes. During
this, optical flows inconsistent with the pose estimation are
detected, often indicating dynamic objects. These regions are
then masked in the image to reduce prediction errors, effec-
tively integrating both event and image data and improving
accuracy in dynamic settings.

Algorithm 1 Events-Augmented Adaptive Block Selection

Require: 2D Image I , Event data E, 3D map M
1: Extract feature points from E
2: Match event features to 3D map points for 2D-3D corre-

spondences
3: Compute optical flow of E
4: for iteration i in N do
5: Select a subset of matched 2D-3D points
6: Estimate pose Pi using PnP
7: Count inliers by projecting 3D points with Pi

8: end for
9: Select pose P with most inliers

10: Find mismatched regions in optical flow against pose P
11: Segment I into blocks
12: Mask mismatched regions in I as dynamic
13: return Masked image I

C. Hierarchical Pose Estimation.

Optical flow techniques, though widely used in traditional
visual processing, haven’t been maximally exploited in current
event-image fusion systems. We believe optical flow provides a
precise portrayal of short-term pose changes using event data
and is a direct, efficient way to leverage the high temporal
resolution unique to event data. Building on this, we present
a two-tiered hierarchical pose estimation framework:

• Coarse Phase: During the blind-time between two image
frames, the pose is estimated continuously by extracting
feature points and computing optical flow from event data.
This approach facilitates accurate real-time pose estimations.
Accumulating the short-term pose variations between two
frames provides a relatively precise preliminary estimation,
especially beneficial when the quality or availability of image
data is compromised.

• Fine Phase: When a new image frame is received, we
utilize the event data accumulated since the last image capture,
employing both the event generation model and a brightness
increment prediction method. These models collaboratively
optimize the pose change between frames. While this step
is computationally intensive, leveraging the pose estimated
from the prior phase (Coarse Phase) enhances efficiency and
accuracy.

In conclusion, our two-phase strategy combines the rapid
feedback from event data with the detail-rich nature of tra-
ditional visual cues. The Coarse Phase provides quick esti-
mations, which the Fine Phase then refines, making use of
the initial data to cut down on computing needs. This struc-
tured approach bolsters our system’s efficiency and reliability,
making it robust and accurate for pose estimation in dynamic
environments.

Processing System (PS)Programmable Logic (PL) Circuits

ARM Cortex-A9 Processor (2*A-Core)

Event Feature 
Detection

Time Surface 
Update

Event Feature 
Tracking

Coarse Pose 
Estimation

Event
Coarse 
Pose

#A2

5.2 Fusion Optimization Processor

#A1

Least Square SolverLeast Square Accelerator

Event Frame 
Generation

Image Feature 
Detection

Brightness 
Prediction

Least Square 
Formulation

Image 
Gradient

Optimization 
Fusion

Image

Fine 
Pose

5.1 Image-aided Event Pose Tracker

Fig. 4. Architecture of Event-Visual Fusion Accelerator.

V. EVENT-VISUAL FUSION ACCELERATOR

Considering the previously discussed challenges, low-power
SoCs like Zynq, which combine both FPGA and CPU,
emerge as ideal candidates for handling stream processing
and demanding computational tasks. This becomes even more
pertinent when focusing on real-time processing and parallel
multitasking. Building on this realization, we adopt a col-
laborative hardware-software design approach and design an
event-visual fusion accelerator: Event-Visual Fusion Acceler-
ator (EVFA). This accelerator prioritizes real-time, efficient
processing in mobile environments. At its heart, the design
taps into the combined strengths of the FPGA and CPU in
Zynq, as depicted in Fig. 4. This arrangement ensures that
intensive computations and stream processing are assigned
to the best-suited components. Central to the EVFA are two
modules: Image-aided Event Pose Tracker (IEPT) and Fusion
Optimization Processor (FOP). Together, they enable real-time
fusion of event and visual data on mobile devices, effectively
capitalizing on the advantages of a unified hardware-software
approach. The following parts will detail how these modules
interact and delve into their technical features.

A. Image-aided Event Pose Tracker

Image-aided Event Feature Extraction. Time Surface
(TS) is a lightweight representation of event streams, which
can well adapt to the dynamic nature of event streams. TS is
a 2D map where every pixel value displays the timestamp
of the last event that occurred at that pixel. We leverage
Polarity Time-Surface (P-TS) [38], whose pixels also display
the polarity of the last event.

Our algorithm operates as follows:
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• Image-aided Initialization: We utilize visual assistance, i.e.
FAST corner detection, to establish a set of visual feature
points. This step not only assigns an initial location to the
feature points but also effectively reduces noise within the
event stream by filtering out events distant from the visual
feature points.
• Time Surface Update: We define a P-TS matrix of the same
size as the image, initialized to zero. With each incoming
event, its position in the P-TS matrix gets updated, capturing
the event’s timestamp and polarity in real-time. The times-
tamps within the P-TS can be employed to gauge the relative
activity level of an event.
• Event Feature Detection: If an event’s timestamp is consider-
ably more recent than the average timestamp of its vicinity and
it is close to other visual feature points, it is identified as a new
feature point. In the absence of visual feature point guidance,
we extract feature points directly based on the recency of
timestamps.
• Feature Aging: To maintain the timeliness and accuracy
of the feature points, we introduce an aging mechanism. If
a feature point’s timestamp in the P-TS matrix hasn’t been
updated for an extended period, indicating no new events in
its area, it’s considered ’aged’ and is subsequently removed
from the collection.

Optical Flow and Pose Estimation. Given the intricate
nature of the process, yet the manageable computational
complexity, both optical flow estimation and pose estimation
are implemented on the PS.

Our algorithm’s workflow is structured as follows:
• Event Feature Tracking: Upon receiving a new set of event
feature point data from the PL, which has been preliminarily
verified for its validity, we embark on the subsequent steps.
The initial operation entails searching for the best match within
our currently maintained active feature point list, leveraging
this data. Through this, we calculate the motion trajectory
for each feature point, thereby deriving the optical flow
information.
• Coarse Pose Estimation: Subsequently, with our pre-existing
3D map, where each feature point is endowed with depth
information from the real world, we harness the optical flow
data and apply the PnP algorithm to deduce the camera’s pose.
This estimated pose serves a dual purpose. While it offers
a coarse pose estimation in scenarios with suboptimal visual
images, it is also accumulated as an initial value for the fine
pose optimization when fused with image data. The cycles
of optical flow estimation and pose determination recur until
a subsequent video frame is received. The pose estimations
between these frames are aggregated, contributing to the fused
pose optimization.

B. Fusion Optimization Processor
Event-image fusion, at its core, revolves around solving

a least squares problem. While current technical solutions
have sought FPGA-based optimization for least squares com-
putations [35], this is fraught with challenges in the event-
image fusion domain, notably constraints in resources, limited
parallelism, and significant transmission latency.

In response to these challenges, we present the software-
hardware co-design Fusion Optimization Processor (FOP).

Central to our approach is the optimal subproblem division
strategy, which is achieved by our unique algorithmic design.
Specifically, by utilizing event-based optical flow and pose
estimation, we eliminate dynamic objects in the scene (illus-
trated in Section IV-B). This ensures that each data block arises
solely from camera motion, and hence, shares the same motion
pattern. This strategy offers three main benefits:

1) Resource Efficiency: By processing smaller blocks of
data, the demand on FPGA hardware resources is re-
duced.

2) Enhanced Parallelism: With a more judicious partition-
ing of data blocks, parallel processing becomes more
efficient.

3) Latency Reduction: Reduced data transfer between the
Processing System (PS) and the Programmable Logic
(PL) leads to quicker data transmission times.

Detailing our solution further, the following critical steps
are involved:
• Block Selection: As outlined in Section IV-B, we incorporate
event-based optical flow and pose estimation to efficiently filter
out dynamic blocks.
• Block Pre-processing: Leveraging the PL, we accumulate
event frames and pre-process images, generating blocks of data
that include pre-processed images and event frames.
• Least Square Formulation: After pre-processing, the blocks
are transmitted to the PS, where a least squares optimization
problem is constructed for each block. Subsequently, these
problems are relayed back to the corresponding solver modules
in the PL.
• Least Square Solving: Established works implemented on
the PL perform the computation to solve the least squares
problems, yielding the pose for each block.
• Optimization Fusion: Initial steps include consistency checks
for each block result. This is achieved by evaluating the pose
estimation error against a preset threshold. Blocks exceeding
this error threshold are deemed outliers and excluded from
subsequent fusion. The poses of the remaining blocks undergo
a weighted fusion, providing the final camera pose.

Aiming to further reduce algorithmic latency, we’ve metic-
ulously architected a dual DMA system. By facilitating unidi-
rectional data flow and fostering efficient hardware-software
co-design, we’ve established a potent pipelined processing
mechanism. This design substantially ramps up processing
speed, ensuring real-time requirements are met.

In conclusion, our adoption of the optimal subproblem
division strategy, coupled with a thoughtfully designed data
pipelining mechanism, effectively addresses the seminal chal-
lenges in event-image fusion resource constraints, parallelism
issues, and data transmission delays. This infuses our approach
with marked improvements in performance and real-time pro-
cessing.

VI. EVALUATION

A. Experiment Methodology
Experiment Data Description. We conduct extensive ex-

periments on both public datasets and real-world scenarios to
evaluate the performance of our proposed platform. Specif-
ically, we first evaluate our system on two public datasets:

1856Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2025 at 06:30:51 UTC from IEEE Xplore.  Restrictions apply. 



(a) Mean Position Error. (b) Mean Rotation Error.
Fig. 5. Overall Localization Performance.

(a) Impact of HDR. (b) Impact of Moving Speed. (c) Impact of Scene Dynamics.
Fig. 6. Robustness Evaluation.

VECtor [39] (marked as V) and MVSEC [40] (marked as M)
to demonstrate its overall performance in different scenarios.
We then evaluate the robustness and real-time performance of
our system on our self-collected dataset, which contains fast
6-Dof motion, HDR scenes and scenes with various dynamics.
The dataset was collected using stereo DAVIS 346 event
cameras carried by an AMOV-P450 drone, providing visual,
event and IMU data. In our case, only the left camera data
will be used. We deploy an OptiTrack motion capture system
with four cameras to collect ground truth.

Experiment Platform. The experiments platform is Zynq-
7020 SoC, including a Xilinx Artix-7 FPGA and a Dual-
Core ARM Cortex-A9. The frequencies of the ARM core and
FPGA are 667MHz and 150MHz, respectively. The system
distribution version is Linux Debian 10.

Evaluation Metrics. To evaluate the accuracy of our sys-
tem, we conducted a quantitative analysis using two metrics:
mean position error (MPE, %) and mean rotation error (MRE,
°/m). When using monocular methods, a scale transformation
is applied to estimate the absolute trajectory, and data from the
left camera will be used. We aligned the estimated trajectory
with the ground truth using a 6-DOF transformation in SE3,
which was calculated using the tool [41].

Baseline Methods. We compare EventBoost with visual-
only and event-visual VO methods. Three baselines are se-
lected:
• ORB-SLAM3 [42]: A state-of-the-art versatile visual SLAM
system.
• UltimateSLAM [19]: An integrated system that harnesses
events, images, and IMU measurements. UltimateSLAM is the
representation system of frame-interpolation-based solutions.
• EDS [21]: Event-camera based direct sparse odometry. EDS
is the representation system of optimization-based solutions.

B. Overall Performance
Localization Accuracy. Fig. 5 depicts the overall local-

TABLE I
PLATFORM OVERHEAD

Platform PC Ours Comparision
Feature Detection / ms 0.6-30 0.1-0.2 > 6x faster

Optical Flow / ms 8.5 1.5 > 5x faster
Coarse Pose Estimation / ms 15 5 > 3x faster
Fine Pose Estimation / ms 126 20.1 > 6x faster

Total Power / W 17.5 4.8 3x more efficient

ization performance of our SLAM system in comparison to
the other three competitive methods. As shown in Fig. 5a,
EventBoost consistently achieves superior localization accu-
racy across different scenarios in most cases. The aver-
age MPE error of EventBoost is 1.754%/m, outperforming
ORB-SLAM3, UltimateSLAM and EDS by 43.33%, 40.44%,
24.33%, respectively. EventBoost performed especially well in
challenging environments marked by strong dynamic changes,
fast motions, and HDR conditions.

As depicted in Fig. 5b, the MRE error of EventBoost
is 0.56°, outperforming ORB-SLAM3, UltimateSLAM and
EDS by 14.00%, 7.64%, 12.75%, respectively. Notably, even
without integrating an Inertial Measurement Unit (IMU),
which is often used to boost the accuracy of SLAM systems,
EventBoost delivered results that were comparable to those of
IMU-enhanced systems like UltimateSLAM.

In summary, by combining frames and events, our method
not only proves resilient across diverse conditions but also
consistently posts lower localization errors. This data strongly
suggests that our system offers a robust and reliable solution
for real-world SLAM applications.

End-to-end Latency. We further evaluate the end-to-end
(E2E) latency (defined as the time taken from receiving an
image frame to getting the fine pose). Our tests spanned three
scenarios: simple, moderate, and complex. In all these tests,
not only did we ensure consistent latency, but we also met the
real-time requirement (30fps). This achievement underscores
our system’s ability to run in real-time on mobile platforms.

Platform Overhead. As shown in Table I, our platform con-
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sistently outpaced a PC setup (Intel i5-8259U), achieving over
6x speed in feature detection and fine pose estimation, over
5x in optical flow, 3x in coarse pose estimation, and proving
3 times more energy-efficient in overall power consumption.

C. Robustness Evaluation
Due to the inferior performance of traditional vision-based

systems in the overall localization experiments, especially
under conditions with HDR, rapid movement, and dynamic
scenes, our robustness experiments only focused on compar-
isons with the other two event-based systems.

Impact of HDR. We investigate the influence of HDR on
various systems. To thoroughly evaluate this, various HDR
phenomena were artificially triggered in our test environment:
significant luminance disparities between the insides and out-
sides of windows(window contrast), transitions from lights-
on to lights-off (lighting transition), the flickering light of a
burning candle (flickering candle), and the abrupt brightening
experienced when exiting a tunnel which simulated using
curtain pulling (tunnel effect). The results, as shown in Fig. 6a,
reveal some clear disparities in performance:

UltimateSLAM, which heavily relies on visual feature
points, performed poorly under HDR conditions. This can be
attributed to the frequent occurrences of overexposure and
underexposure in HDR, which can be challenging for such
systems to handle. Similarly, EDS, which is based on a frame
prediction model, also encountered difficulties, resulting in
suboptimal outcomes in HDR settings.

Contrastingly, EventBoost displays commendable stability
and proves its efficacy under HDR conditions. This under-
scores its potential to reliably function in real-world environ-
ments with varying lighting conditions.

Fig. 7. Overall End-to-end Latency.
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Fig. 8. Impact of Modules.

Impact of Moving Speed. Next, we explore the impact
of moving speed on the performance of the systems. As
illustrated in Fig. 6b, EventBoost continues to outshine the
others. UltimateSLAM manages to deliver fairly consistent
results even under rapid motion with assistance from IMU.
However, EDS falters in such scenarios. The motion blur
introduced by swift movements adversely affects EDS’s image
gradient calculations, leading to inaccurate pose estimations.

In contrast, our system capitalizes on Coarse Pose Estima-
tion with the event camera. This inherent feature empowers
EventBoost to maintain stable and precise localization results,
even when confronted with high-speed motion. This further
cements the robustness and versatility of our proposed system
across varying operational conditions.

Impact of Scene Dynamics. We finally assess the impact of
scene dynamics on the performance. In our experimental setup,
we introduced varying degrees of dynamics: a completely

static room (room static), a working desk fan (rotating fan), a
flying mini-drone (mini drone), and a person walking across
the test area (walking person).

As depicted in Fig. 6c, the performance of EDS deteriorates
sharply as the dynamism of the scene increases, primarily due
to the breakdown of its frame prediction model. UltimateS-
LAM, leveraging event-frame technology, manages to filter out
some of the dynamic entities in the scene. However, the need
for accumulating event frames over time means the system still
experiences a slight performance hit in dynamic environments.

In contrast, EventBoost stands resilient against these chal-
lenges. By harnessing event optical flow and Coarse Pose
Estimation, it effectively isolates and discards the influence
of dynamic objects. This capability ensures that our system
delivers both accurate and consistent results, regardless of
the scene’s dynamics. This experiment further solidifies our
claim that EventBoost is adept at handling a wide array of
environmental challenges

D. Ablation Study
Contributions of Each Module. We examine how Dual-

Phase Event-Visual Pose Tracker (DPT) and Event-Visual
Fusion Accelerator (EVFA) contribute to EventBoost. To break
this down, we incrementally incorporated DPT and EVFA
into our baseline system (when EVFA is omitted, DPT runs
exclusively on the CPU). Following each integration, we
reassessed the localization accuracy and end-to-end latency. In
Fig. 8, the Baseline without the two modules has a localization
error of 28.4 cm and latency of 523ms. Integrating the
DPT module reduces the error to 10.6 cm, though latency
rises to 642ms due to increased CPU demands. Adding the
EVFA further reduces the error to 25.4 cm, but again, latency
increases, a side effect of our DPT’s design. Combining both
DPT and EVFA, EventBoost optimally balances accuracy and
speed, marking a significant advancement in SLAM system
performance.

In summation, our ablation study reaffirms the pivotal
role played by DPT and EVFA in shaping the performance
contours of EventBoost, each contributing its unique strength
to make the system robust and efficient.

VII. CONCLUSION

In this study, we highlighted the challenges of fusing event-
driven and image data for UAVs in challenging conditions.
While event cameras promise solutions, their full potential
is curtailed by algorithm and hardware shortcomings. Our
EventBoost platform, developed through a software-hardware
co-design approach, adeptly addresses these issues. The exper-
iment results indicate not only improved accuracy and latency
but also its practical value in UAV tasks. In essence, our
work offers a blueprint for enhancing the future efficiency and
reliability of UAV systems.
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