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Reshaping Edge-Assisted Visual SLAM by
Embracing On-Chip Intelligence
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Qiang Ma ", Xuan Ding

Abstract—Edge-assisted visual SLAM plays a crucial role in en-
abling innovative mobile applications, such as autonomous swarm
inspection, search-and-rescue, and smart logistics. Constrained by
the computational capacities of lightweight mobile devices, current
approaches delegate lightweight, time-sensitive tracking tasks to
the mobile end while offloading resource-intensive, latency-tolerant
map optimization tasks to the edge. However, our pilot study
reveals several limitations of the tracking-optimization decoupled
paradigm, stemming from the disruption of inter-dependencies
between the two tasks. In this paper, we design and implement
edgeSLLAM2, an innovative system that reshapes the edge-assisted
visual SLAM paradigm by tightly integrating tracking and partial-
yet-crucial optimization on mobile. edgeSLLAM2 harnesses the het-
erogeneous computing units offered by the commercial systems-
on-chip (SoCs) to enhance the computational capacity of mobile
devices, which in turn, allows edgeSLAM?2 to design a suit of novel
algorithms for map sync, optimization, and tracking that accommo-
date such architectural upgrade. By capitalizing on the full poten-
tial of on-chip intelligence, edgeSLLAM2 supports both solitary and
collaborative SLAM with accuracy and immediacy, underpinned
by a cohesive software-hardware co-design. We deploy edgeSLAM2
on drones for industrial inspection. Comprehensive experiments in
one of the world’s largest oil fields over three months demonstrate
its superior performance.

Index Terms—Edge computing, visual SLAM, multi-agent
collaboration, software and hardware co-design, drone-based
applications.

1. INTRODUCTION

ISUAL Simultaneous Localization and Mapping (SLAM)
V employs video streams to simultaneously construct a 3D
environmental map and estimate the camera’s pose [1], [2], [3],
[4]. Tts real-time functionality, particularly on mobile devices
such as drones and robots, is pivotal for underpinning an array of
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intelligent device applications such as environmental perception,
self-state estimation [5], [6], [7], [8], and capabilities like drone
flight control, obstacle avoidance, and intelligent interaction [9],
[10], [11], [12].

Visual SLAM’s computational intensity impedes efficient and
accurate operations on lightweight devices such as Micro Aerial
Vehicles (MAV) and smartphones [5], [6]. To enhance system
accuracy and efficiency on mobile, current practice resorts to
edge computing and design a front-end Tracking with back-
end Optimization edge-assisted architecture. Within this setup,
mobile devices focus on lightweight, time-sensitive tracking
tasks for pose estimation and map generation. Meanwhile, the
resource-intensive tasks of local and global map optimization
are offloaded to edge servers.

Such a tracking-optimization decoupled strategy not only al-
leviates resource pressures on mobile devices [13], [14], [15] but
also allows edge servers to centralize and optimize visual maps
from multiple agents, enhancing collaborative efforts for tasks
like cooperative scheduling [16], [17], [18]. This edge-assisted
paradigm underpins numerous applications, e.g., smart logis-
tics [19], warehouse sorting [20], and industrial inspection [21].

While existing edge-assisted SLAM systems show promise,
our deployment of these systems on drones for industrial inspec-
tions highlighted several drawbacks (Section II-B). We find due
to the isolation of fracking and optimization, which are origi-
nally tightly intertwined in terms of data dependency, resource
allocation, and thread management, the following challenges
arise:

e Map synchronization strains network bandwidth: Real-time
edge-mobile map synchronization facilitates mobile agents to
access optimized local maps, crucial for maintaining tracking
performance [13]. However, this synchronization, involving
continuous streaming large volumes of map data (i.e., map points
and keyframes) over wireless links, risks quickly saturating the
constrained and congested wireless spectrum (Section II-B-C1).

e Map update delay impairs localization accuracy: The
quality of local maps, which are crucial for the localization
performance of mobile devices, hinges on prompt updates from
edge-optimized maps [5]. However, the combined latency from
on-network map data transmission and on-mobile map recon-
struction results in delayed updates, potentially causing tracking
drift (Section II-B-C2).

e Map stitching deteriorates tracking determinism: During
map synchronization, mobile devices need to stitch received
edge-optimized maps with their local ones. Typically, map
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Fig. 1. Edge-assisted SLAM architecture comparison. (a) The tracking-
optimization decoupled architecture necessitates frequent data synchronization
(i.e., map upload every 1s, and local map update every 2s [15]). (b) The
upgraded architecture enables the tightly intertwined fracking and local map
optimization to run concurrently on the mobile client, alleviating the map
synchronization stress (i.e., upload every 10 s, update every 40 s on average).

updates and pose tracking are handled in separate threads [14],
[15], employing locks to avoid read/write conflicts within the
local map database. However, map stitching, can prolong the
duration of map-locking, which results in unexpected tracking
thread interruptions (Section II-B-C3).

Lessons Learned. The constrained computational capabilities
of mobile devices necessitate positioning local map optimization
at the edge in current tracking-optimization decoupled archi-
tectures (Fig. 1(a)). This leads to frequent mobile-edge map
syncs, giving rise to the aforementioned challenges. To render
edge-assisted SLAM more practical in challenging and network-
limited environments, it’s crucial to rethink the edge-assisted
architecture — by integrating tracking and local map optimiza-
tion on mobile (Fig. 1(b)), we can concurrently elevate system
accuracy and efficiency, while minimizing resource overhead.

Recently, we find two opportunities to enhance the comput-
ing capability of lightweight mobile devices for such potential
architectural upgrades. On the one hand, the software-hardware
co-design paradigm has been widely adopted for mobile devices.
Current innovations employ hardware resources (e.g., FPGA)
to accelerate software algorithms and boost overall system effi-
ciency. On the other hand, the proliferation of embedded SoCs
(e.g., Xilinx Zynq [22], NVIDIA Tegra [23]) that offer hetero-
geneous arithmetic units are enabling software-hardware co-
designs. These two trends propel on-chip intelligence, empow-
ering lightweight mobile devices to handle intricate tasks [24],
[25], [26].

Our Work. Motivated by the above challenges and oppor-
tunities, we design and implement edgeSLAM?2, a fresh edge-
assisted visual SLAM system that re-imagines edge-assisted
architecture by tightly integrating tracking and local map op-
timization on mobile. edgeSLAM?2 harnesses the heterogeneous
computing units offered by the Zynq UltraScale+ MPSoCs [22]
to enhance the computational capacity of mobile devices,
and on this basis, accommodates such architectural upgrade
through software-hardware co-design. As illustrated in Table I, a

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

TABLE I
EDGE-ASSISTED SLAM SYSTEM COMPARISON

System Bandwidth(MB/s)  Accuracy(cm) Latency(ms)
SwarmMap [13] 1.35 132 £53 322+ 64
Edge-SLAM [14] 2.99 179 £59 343 + 8.0
edgeSLAM [15] 4.49 113 £5.1 37.2 +10.9

edgeSLAM?2 0.27 7.6 £29 23.7 £ 1.2

The bold values highlight the fact that our approach, by all metrics, outperforms the
comparison work.

comparison with existing practices in oil-field scenarios show-
cases the effectiveness of edgeSLAM?2. Overall, edgeSLAM?2
excels in three aspects:
® On the Architecture front, we redesign task allocation
between mobile and edge. Different from current prac-
tice, the Local Map Optimization module, which is tightly
coupled with Tracking, is loaded to mobile devices. We
further extract a lightweight loop detection module from
the global map optimization and relocate it to mobile to
decrease the triggering frequency and data volume for map
synchronization, further enhancing efficiency (Section III).
® On the Algorithm front, we propose a new mobile-edge
map synchronization solution compatible with the up-
graded architecture. We first introduce Event-Responsive
Map Synchronization, optimizing the timing and fre-
quency of map synchronization under the new paradigm
(Section IV-B). Then, we propose Observation Consis-
tency based Map Streamlining, minimizing the transmis-
sion payload by selectively compressing the necessary map
elements (Section IV-C).
® On the Implementation front, We fully utilize heteroge-
neous computing units to enable mobile tasks to run in
real time (Section I'V-A). Particularly, we propose a Delay
Deterministic Tracking approach, leveraging FPGA and
resource isolation strategy to accelerate critical modules in
tracking and prevent its thread from being interrupted, to
alleviate the tracking delay bottleneck (Section IV-D).
We deploy edgeSLAM2 on a drone testbed, and further
integrate it into ArduPilot [27], a widely-used drone flight
controller, for automated industrial inspections. Comprehensive
experiments are carried out in one of the world’s largest oil fields
over three months, covering a variety of scenarios including
warehouses, oil-producing areas, and factories, collecting 188
trajectories with 182,267 frames (Section V-A). We compare
edgeSLAM?2 with three state-of-the-art (SOTA) edge-assisted
SLAM systems, SwarmMap [13], edgeSLAM [15], and Edge-
SLAM [14]. Evaluation results show that edgeSLAM? achieves
an average bandwidth consumption of 0.27 MB/s, a localization
accuracy of 7.6 cm, and a tracking delay of 23.7 ms. This
performance surpasses competing methods by achieving an 80%
reduction in bandwidth consumption, a 32% improvement in
accuracy, and a 26% reduction in tracking delay (Section V-B).
Furthermore, by embracing the upgrade edge-assisted paradigm,
edgeSLAM?2 inherently prevents scalability issues associated
with expanding agent counts in multi-agent collaborative map-
ping tasks (Section V-F).
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The key contributions are summarized as follows:

1) We design and implement edgeSLAM2, an innovative
system that reshapes the edge-assisted visual SLAM
paradigm by fully embracing on-chip intelligence.

2) We advance the core technologies of mapping, local-
ization, and synchronization foundational to the new
architecture through software and hardware co-design.
Consequently, edgeSLAM2 empowers mobile devices to
achieve accurate localization and mapping in real-time,
even in network-challenged environments.

3) We leverage the efficient map-sharing capabilities of the
upgrade architecture to enhance the map synchronization
and compression mechanisms for multi-agent collabo-
rative mapping, potentially serving as a foundation for
multi-agent collaboration tasks under the new generation
of edge-assisted SLAM paradigm.

4) We implement edgeSLAM?2 and deploy it on industrial
inspection drones. Our three-month pilot study in oil fields
demonstrates that edgeSLAM?2 makes a great process
towards fortifying edge-assisted visual SLAM into a fully
practical system for wide deployment.

II. BACKGROUND AND MOTIVATION
A. Edge-Assisted Visual SLAM Systems

An edge-assisted visual SLAM system can be abstracted
as mobile, edge, and network, three layers [13]. The current
practices with tracking-optimization decoupled architecture can
be summarized as below.

Front-End Tracking on Mobile. A mobile device receives
video stream input, extracts feature points from each frame, and
estimates the camera pose (i.e., pose tracking) by correlating
these features with a pre-constructed local map (i.e., a set of
3D map points and keyframes).! Moreover, new map points are
created and added to the local map (i.e., map tracking), aiding
the following tracking process.

Back-End Optimization on Edge. On an edge server, a global
map is maintained and persistently fine-tuned through both local
and global map optimization. Specifically, local Bundle Ad-
justment (local BA [28]) is employed to optimize the uploaded
local map, enhancing the accuracy of map point locations and
keyframe poses. Simultaneously, loop closing [2] combined with
global BA is leveraged to globally optimize the overall map and
trajectory.

Map Synchronization Through Network. Newly generated
map points and keyframes on mobile devices are uploaded to the
edge server for either local or global optimization. The optimized
map, in turn, is transmitted back to the mobile device for refining
the local map.

B. Limitations of Current Practice

We conduct a field-study within the oil-fields, and re-
implement three SOTA, open-source edge-assisted SLAM

'Keyframes are a subset of frames that capture essential data like camera
position, map point observations, and the visibility relationships with other
keyframes.
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systems, SwarmMap [13], Edge-SLAM [14], and edgeS-
LAM [15], on an inspection drone. Through the evaluation
of their performance using 232 trajectories (setup detailed in
Section V), we identified three major issues stemming from the
isolation of Tracking and Local Map Optimization.

C1: Excessive Bandwidth Consumption. Within edge settings,
maintaining high-quality Tracking requires frequent map syn-
chronization. In practice, the mobile client persistently uploads
detected keyframes and newly generated map points to the
edge. The edge server, in response, promptly optimizes the local
map and returns the updates. This process implies frequent and
intensive data transmission. For instance, SwarmMap executes
updates every two seconds, which includes dozens of keyframes
along with their associated map points [13].

We quantify the bandwidth usage of three related systems in
diverse scenarios, depicted in Fig. 2(a). The data volume for
map sync, even with a single mobile device, is considerable.
This demand escalates in multi-agent collaborative scenarios,
further outstripping the available network bandwidth. Although
SwarmMap reduce map volume through designing compact
map representations, it faces limitations as the map scale and
complexity increase.

C2: Considerable Localization Error. In the Tracking mod-
ule, the mobile device location is estimated by referencing a
pre-constructed local map. Errors in map construction can lead
to driftin localization, and conversely, inaccurate device location
can adversely affect map incremental construction. Therefore,
timely updates of the local map are crucial to prevent the
bidirectional negative feedback between map offset and location
drift. However, in existing architectures, local map updates are
inevitably subject to delays caused by network transmission and
map stitching processes.

To validate our analysis, we investigated the direct impact
of map update delays on localization accuracy of Edge-SLAM,
as demonstrated in Fig. 2(b). While the accuracy degradation
due to map update delays in the warehouse is inconspicuous,
as network quality degrades and map scale grows, Edge-SLAM
experiences significantly longer map update times, leading to a
considerable reduction in localization accuracy.

C3: Highly Dynamic Tracking Delay. The Tracking and Local
Map Optimization modules share map resources and employ
map-locking to avoid memory access conflicts between these
two parallel threads. As such, when updating the map, Tracking
must momentarily pause, waiting for the release of resources,
and vice versa. However, unlike the direct access to map ele-
ments facilitated by local updates (e.g., through pointer access),
edge map stitching necessitates an extensive search for each
keyframe and map point to find all their references. This pro-
cess prolongs the duration of shared map resource occupancy,
subsequently stalling the real-time operation of Tracking.

We evaluate the tracking delay of three related systems
over a continuous period of time, as shown in Fig. 2(c). Al-
though all systems can maintain an average frame rate of up
to 30fps, resource contention induced by map stitching pro-
foundly impacts the tracking performance. Specifically, around
the 280th frame, the tracking delay for all systems surged beyond
70 ms (e.g., <15 Hz). Additionally, inevitable procedures such
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as map generation, serialization, and transmission chip away at
the limited computational resources intensifying the uncertainty
of tracking delay.

III. SYSTEM OVERVIEW

edgeSLAM?2 upgrades the tracking-optimization decoupled
architecture (Fig. 1(a)) by transferring the local map optimiza-
tion from edge to mobile, as shown in Fig. 1(b). edgeSLAM?2’s
architecture is outlined in Fig. 3. From a top perspective, edgeS-
LAM2 shares the similar system abstraction of mobile, edge, and
network layers, and is built upon the latest ORB-SLAM3 [2].
We delve into the specific workflow in this re-imagined edge-
assisted visual SLAM architecture, and summarize the novel
functional modules designed to support architectural upgrade
across three layers.
® On the Mobile layer, edgeSLAM?2 applies a software-
hardware co-design on a heterogeneous computing chip
(Section IV-A). It integrates FPGA-adapted essential al-
gorithms and resource isolation for delay deterministic
tracking (Section IV-D), while retaining most generic com-
puting resources for local map optimization. Additionally,

an initial loop recognition is conducted by a lightweight
loop detection module.

® On the Edge layer, edgeSLAM?2 undertakes an complete
loop verification upon the arrival of a loop detection signal
from the mobile client, subsequently initiating loop cor-
rection and global optimization. Moreover, in the multi-
agent collaborative mapping, edgeSLAM?2 carries out map
stitching when overlaps in maps from various agents are
identified.

® On the Network layer, edgeSLAM?2 refrains from fre-
quent uploads of newly generated maps. Instead, it imple-
ments an event-responsive map synchronization strategy
(Section IV-B) to refine the timing and frequency of syn-
chronization. To further enhance efficiency, an observa-
tion consistency based map streamlining approach (Sec-
tion IV-C) is employed for effective map compression
before synchronization.

IV. SOFTWARE AND HARDWARE CO-DESIGN

In this section, we first introduce the on-chip design of edgeS-
LAM?2 supporting the paradigm shift (Section IV-A), covering
both the on-chip architecture and workflow. Next, we propose a
map synchronization strategy (Section IV-B) and a map stream-
lining method (Section I'V-C) that work together to improve map
synchronization efficiency in the upgrade edge-assisted SLAM
paradigm. Finally, we explain how the on-chip hardware and
software resources are utilized to ensure the latency determinism
of the critical tracking module (Section IV-D).

A. edgeSLAM?2’s On-Chip Architecture

We utilize the most recent iteration of the commercially
available Zynq UltraScale+ MPSoC (hereafter referred to as
MPSoC), a heterogeneous computing platform pioneered by
Xilinx [22], to implement the mobile side of edgeSLAM?2 via
software-hardware co-design. We initially provide a succinct
overview of the MPSoC platform, following which we delineate
the on-chip architecture of edgeSLAM2.

1) Zyng Platform Primer: Fig. 4 depicts the hierarchical
computational resources offered by the MPSoC. As illus-
trated, the MPSoC is comprised of two modules: a Processing
System (PS), purposed for software development, and User-
Programmable Logic (PL), intended for hardware design. The
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edgeSLAM?2’s on-chip architecture. The left side exhibits the Zynq UltraScale+ MPSoC, while on the right, the functional modules of edgeSLAM?2 are

spatially mapped one-to-one with the heterogeneous computing cores of the MPSoC.

PS is equipped with a Cortex-A53 quad-core processor (4*A-
Core) and a Cortex-R5 dual-core processor (2*R-Core). Typi-
cally, the Linux OS (e.g., PetaLinux, Debian) is employed for
centralizing the four A-Cores, whereas a Real-Time Operating
System (RTOS) is used for scheduling the two R-Cores, designed
specifically for real-time applications. On the other hand, the
PL offers programmable logic blocks, advanced digital signal
processing (DSP), and other resources specifically designed for
hardware development and customization.

2) Architecture: The on-chip architecture of edgeSLAM?2,
as depicted in Fig. 4, is deftly integrated with the computational
capabilities of MPSoC. First, Tracking is accomplished through
the collaboration of PS and PL: the PL is responsible for ex-
ecuting repetitive and parallelizable modules such as feature
extraction and matching, while the dedicated #A1 serves as the
host, performing control and optimization tasks.

edgeSLAM? allocates most of the general-purpose computa-
tional resources to Local Mapping on #A2-A4 in PS, a process
that is resource-intensive involving both map generation and
local map optimization. Furthermore, Lightweight Loop Detec-
tion, a non-latency-sensitive task, shares #A2-A4 with Local
Mapping under the management of the OS.

We employ a map synchronization controller on #R1. This
controller primarily serves two functions: leveraging the map
compression encoder provided by the PL for real-time map
compression (Section IV-C), and executing map transmission
based on the specified synchronization strategy (Section IV-B).

Lastly, the #R2 hosts the real-time drone control module,
receives pose information from the Tracking module (#Al),
plans the flight path, and transmits control signals through the
General Purpose Input/Output (GPIO).

3) Workflow: The workflow of edgeSLAM?2, demonstrated
in Fig. 5, aligns with a typical SLAM pipeline and emphasizes
both parallelism and pipelining. Upon receipt of an input (e.g.,

Ny, frame), the Tracking module employs a specific hardware
accelerator (PL) through an Advanced eXtensible Interface
(AXI) for feature extraction and matching, followed by pose
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Fig. 5. A typical on-chip workflow of edgeSLAM?2.

estimation and optimization on #A1. The estimated pose in-
formation is then passed to the flight control module (#R2) for
downstream tasks. If the [V, frame is selected as a keyframe, two
operations run concurrently: (i) Local Mapping on #A2-A4 for
local map generation and optimization; (ii) Lightweight Loop
Detection for initial loop identification. Upon loop detection,
map streamlining on #R 1, in conjunction with the compression
encoder (PL), compresses the yet-to-be-synchronized map. This
streamlined map is then dispatched to the edge server for further
verification and global optimization. Additionally, in the case of
Tracking Lost, the Relocalization module on #A1 utilizes the
Bag-of-Words matching module (PL) to recalibrate the current
location.

B. Event-Responsive Map Synchronization

To determine the optimal timing for map synchronization,
we monitor and respond to specific events within the map. This
approach aims to: (4) ensure timely execution of loop detection
and global optimization, maintaining the quality of maps; (i)
facilitate the swift sharing of locally constructed maps with
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Event-Responsive Map Synchronization. In these scenarios, Events #1 and #2 occur within loop closure, while Event #3 is triggered by Tracking Lost,

resulting from swift shifts in perspective. Event #4 is set off after the merging of local maps from three distinct agents at the edge. For Events #1-3, red dots represent
active map points detected by the current frame and co-visible keyframes, whereas black dots signal optimized, stable map points that are out of observation. In
Event #4, map points are color-coded in three different hues to distinguish the local maps contributed by each agent.

other clients via centralized edge server, promoting cooperative
tasks; and (7i¢) minimize redundant data transfers, maximizing
synchronization efficiency. Motivated by these objectives, we
focus on four specific map events from both mobile and edge
side, and suitable for multi-agent collaborative scenarios. We
showcase typical examples of four map events in Fig. 6.

Event #1: Progressive Cross-Tier Loop Detection. A
lightweight loop detection module is utilized on the mobile
client for initial identification of potential loops, with subse-
quent resource-intensive processes (i.e., loop correction, global
optimization) are offloaded to the edge server.

Specifically, we use Bag-of-Words vector matching (i.e., the
first step in full loop-closure [2]) for initial keyframe comparison
within the local map, pinpointing similar keyframes that may
indicate a loop. Upon loop detection (Event #1), the mobile
device retrieves and immediately uploads the unsynchronized
segment of the current local map. When the edge server receives
this map segment along with the loop closure signal, the subse-
quent steps vary based on the loop type. For an intra-map loop
closure (i.e., revisiting a location within the current active map),
loop correction and global optimization are swiftly initiated.
Conversely, with an inter-map loop closure (i.e., identifying
overlap between the current active and a non-active map), the
maps are merged prior to global optimization. Following the
completion of optimization, the updated map is synchronized
back to the mobile device, thereby replacing the local map.

Loop-closure not only directly rectifies the local map offset
and localization drift but also simultaneously optimizes global
mapping in multi-agent collaboration. Therefore, this map-event
is assigned the highest priority in the Map Synchronization
Controller (#R1).

Event #2: Map-Segment Stabilization. In visual SLAM, active
map elements (e.g., current frames alongside their co-visible
keyframes, and observed map points) frequently change due
to local map optimization on the mobile device. These yet-
to-stabilize elements, even when synchronized to the edge
server, are rapidly superseded by newer updates, resulting in the
wasteful use of network resources with minimal contribution
to collaborative mapping. Therefore, we periodically upload
map segments deemed stable, thereby preventing redundant
uploading of map elements.

Specifically, we employ a Least Recently Used (LRU) strat-
egy [29]. We maintain a queue of keyframes, whenever a new
keyframe is chosen, triggering local map optimization, we shift
any modified keyframe to the front of the queue. Simultaneously,
keyframes that have cooled down are shifted from the queue’s
rear to the ready-to-sync map segment. When this segment
comprises Ny consecutive keyframes (Event #2), we upload
the keyframes and their related map elements from that segment.

Our approach of periodically uploading continuous map seg-
ments, as opposed to individual frames, aims to enhance map
compression efficiency (Section IV-C). Selecting a larger value
for Ny, yields higher compression ratios, albeit at the expense
of real-time synchronization in collaborative mapping.

Event #3: Local Map Inactive. We handle two specific sce-
narios where the currently tracked local map becomes inactive
(Event #3):

(i) When the mobile device completes its map exploration
task, and the local map is no longer subject to modifications
(e.g., map creation, optimization), at which point the remaining
unsynchronized map is uploaded to fulfill the final task of
collaborative mapping.

(i) In cases where tracking is lost during exploration and a
new sub-map is initiated for tracking restart, the original local
map transitions to a non-active state. Its residual parts are then
uploaded and the non-active map are stored on the edge server,
awaiting reactivation triggers (i.e., loop closure, map stitching).

Event #4: Collaborative Map Updating. On the edge side,
edgeSLAM?2 considers map update events from multi-agent
collaborative mapping, yet refrains from synchronizing every
incremental global map change with clients. Because these in-
cremental map segments, while subject to potential inaccuracies
and offsets, often undergo several rounds of optimization. Con-
sequently, their frequent transmission could result in substantial
data redundancy.

Therefore, edgeSLAM?2 selectively tackles multi-agent map-
ping updates on the edge side that significantly improve the
client’s local map (Event #4). This primarily involves map
stitching, as illustrated in Fig. 6, where the edge server identifies
overlaps and merges map segments from various clients. For
simplicity, we reuse the stitching approach proposed in [16],
yet edgeSLAM2 remains adaptable to other plug-and-play map
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merging modules. After the map stitching process, only the local
maps that have been merged with others are synchronized and
updated. Besides, the completion of loop closing and mapping
task by any client, indicating a significant update for global map,
triggers the synchronization of the enhanced global map with all
associated clients.

C. Observation Consistency Based Map Streamlining

Under the revised edge-assisted architecture and map syn-
chronization strategy, it becomes imperative to reconsider how
map elements are compressed during upload/download. Exist-
ing edge-assisted SLAM systems reduce data volume through
streamlined mapping strategies, namely, stringent constraints
on feature extraction and keyframe selection [S5]. In contrast,
edgeSLAM?2 does not intervene in map construction to en-
hance compression. Instead, it capitalizes on the benefits of
its synchronization strategy, where the map segments queued
for synchronization are of substantial size. This allows for the
identification and elimination of redundancy in map elements,
thereby streamlining the map from a holistic perspective.

Specifically, in a continuous visual SLAM scenario, any
created map point is observed from multiple keyframes, each
represented by a similar descriptor.”? These observations are
associated through feature matching and triangulated to generate
corresponding 3D map point, as depicted in Fig. 7. Leveraging
the similarity in observations of the same map point across
various keyframes, we (7) compress the feature descriptors, the
predominant storage component, and (iz) selectively retain the
most informative map points, balancing compression ratio and
map integrity.

1) Observation Compression Coding: When a map segment
is selected for upload, the compression process starts by extract-
ing the essential map from the full map, specifically by removing
features not associated with any map point (about 70% of the
total map storage), as they typically hold no relevance for map
optimization or cooperative mapping.

2In the ORB feature, the descriptor represents the image patch surrounding
the keypoint with a binary string of 256 bits in length.
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Following this, for each map point in the essential map, we
compress and encode its associated observations. Initially, we
calculate the Hamming distance between descriptors to assess
the similarity of observations. Then, using the map point as the
root and the distances between descriptors as edge weights, we
construct a minimum spanning tree with observations as nodes,
as illustrated in Fig. 7. This method ensures that starting from
the map point, each connection in the tree is based on the highest
data similarity. Similar to [30], we traverse the spanning tree iter-
atively, calculate the residuals between neighboring descriptors,
and employ arithmetic coding to compress these residuals.

The effectiveness of integrating this compression method
within edgeSLAM?2’s on-chip system is grounded in two key fac-
tors. First, the minimal residuals between observations yielded
by the spanning tree, when combined with arithmetic coding,
enable efficient map compression, effectively mitigating the
redundancy among similar observations. Second, our event-
responsive map synchronization strategy (Section IV-B) facil-
itates the upload of sufficiently large map segments, which
assures the scale of the spanning tree (i.e., a map point with ade-
quate observations), thereby enhancing compression efficiency.
Additionally, we employ a Map Compression Encoder on the PL
to alleviate the computational costs associated with Hamming
distance calculation and arithmetic encoding [31].

2) Map Point Trimming: Utilizing observation consistency
allows us to meticulously trim the map segments awaiting syn-
chronization, focusing on keeping those map elements of supe-
rior quality. This strategy aims to decrease both synchronization
and storage overheads without adversely affecting the map’s
accuracy. To elaborate, we prioritize retaining map points with:
(7) High visibility across multiple keyframes, as this often sig-
nifies their valuable contribution to localization and map refine-
ment; (i7) Lower storage requirements after compression coding
among those with comparable observation counts, reflecting
greater stability (i.e., the stronger the observation consistency,
the more efficient the compression).

Specifically, given amap point p to be synchronized. The num-
ber of its observations is /V,, and its total encoded length (includ-
ing the map point itself and related compressed observations) is
L,. We denote the weight of p as W), = (Nyaw — Np) * Ly,
where N,,,, corresponds to the maximum number of obser-
vations linked to any map point in the segment. We prioritize
maintaining map points with smaller W,. Starting with the
lowest quality map point (indicated by the highest W),), we
attempt to remove map points and their observations iteratively.
To ensure that all keyframes retain their localizability following
the removal of map points, a sufficient number of observations
must be preserved. Therefore, in this ordered removal, we
preserve those map points whose absence would lead to any
keyframe’s observations falling short of V,;, a threshold set at
40 in our configuration. By tuning the map point trimming rate,
we balance compression efficiency with localization accuracy,
as evaluated in Section V-D2.

This simple yet effective strategy not only alleviates the
burden on the uplink from mobile devices but also proves
effective in streamlining the aggregated maps on the edge server.
In the multi-agent collaborative mapping scenario, despite the
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Algorithm 1: Adaptation of Matching on PL.
Input: Feature Descriptors:
Dy ={Dy}, D = {Dm}
Output: Matching Results: M
1 for each Dy in Dy do // k-Way Loop Unroll

2 initialize Miocal = 0, diSmin = +00;
3 for each D,, in D,,, do

4 dis = Hamming(Dy, D,,); // Parallel

XOR ports + Adder tree

5 if dis < dispin then

6 | dismin = dis; My = Dyy;

7 end

8 end

9 if dismin < Tireshola then

10 ‘ Mloca1~add([Df7MfD;

11 end
12 end

13 M = ParallelReduction({ Misca});

local maps from mobile clients being pre-trimmed, further
streamlining on edge side is possible due to (i) repeatedly
visited areas in global map introducing redundancy, and (i)
the better compression capabilities when applied to fuller maps.
Consequently, we apply the same compression and trimming
strategies to the aggregated global map on the edge side, en-
suring the collaborative map remains streamlined. However,
unlike the smaller map segments on the mobile devices, stream-
lining the global map requires extensive computational resources
over a prolonged period. To avoid obstructing crucial optimiza-
tion tasks, we streamline the global map only during offline
stages (i.e., after all agents have completed their mapping tasks).

D. Delay Deterministic Tracking

In the critical Tracking module in edgeSLAM?2, we lever-
age the heterogeneous computational resources on-chip to (4)
effectively accelerate time-consuming algorithmic bottlenecks
in tracking, ensuring real-time performance, and (i7) maintain
smooth tracking operations, unhindered by resource contention,
guaranteeing tracking determinism.

1) Hardware Adaptation of Tracking: In the tracking pro-
cess, feature extraction and matching constitute the computa-
tional bottlenecks [32]. Specifically, during feature extraction,
ORB features [33] are obtained from the input image via a
combination of FAST keypoint and BRIEF descriptor, and gain
rotational and scale invariance through orientation adjustment
and pyramid creation, respectively. During feature matching,
each detected feature in the current frame seeks to match with a
3D map point in the local map, based on the Hamming distances
between their BRIEF descriptors.

Feature Extraction. We restructure the ORB feature extraction
algorithm to align with hardware processing capabilities. As
shown in Fig. 8(a), we downsample the input image and conduct
parallel processing on the generated 4-layer pyramid. For each
layer, we first detect FAST keypoints within the image, then
calculate the rotationally symmetric BRIEF descriptors [34] of
these keypoints, and finally filter the optimal feature points based
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Fig. 8. Adaptation of feature extraction on PL. (a) This highly parallelized
module receives images from AXI and outputs extracted features (i.e., keypoints
with descriptors). Different line styles and colors denote varied algorithm
modules. (b) Numbers (1,2,3,4) symbolize detected keypoints. In the serial
pipeline, keypoints are detected, filtered (delete 2), and then descriptors (1,3,4)
are computed. In the parallelized pipeline, the keypoint extraction and descriptor
computing are performed concurrently, followed by feature filtering.

on Harris scores [35] through a max heap. This rescheduled
approach, as opposed to the conventional CPU workflow of
filtering keypoints before calculating descriptors, allows for
simultaneous execution of keypoint detection and descriptor
calculation, as depicted in Fig. 8(b). This efficient pipeline
significantly reduces hardware idle periods, thereby optimizing
feature extraction latency.

Feature Matching. Our adaptation for hardware also extends
to feature matching. In Algorithm 1, we detail our strategy for
parallelization and the associated hardware design. Specifically,
the input includes two sets of descriptors, Dy and D,,, derived
from the current frame and local map, respectively. By utilizing
a 4-way loop unroll, the algorithm in parallel determines the
optimal match in D,, for every descriptor in Dy (Line 1). The
similarity between the two descriptors is gauged using Hamming
distance via the Hamming function (Line 3), a pipeline structure
formed from parallel XOR ports and a pipelined adder tree,
capable of executing a distance computation in every clock cycle.
We then track the descriptor in D,,, nearest to Dy (Line 4-7)
and perform a final evaluation against the matching threshold
(Line 8—11). At Line 13, we use parallel reduction [36] for con-
current updates to M. Similarly, to accelerate the relocalization
process, we also implement a hardware-adapted Bag-of-Words
matcher, operating under a parallel routine akin to the above
feature matching strategy.

2) Resource Isolation: Ensuring uninterrupted and timely
execution of the time-sensitive Tracking thread on the CPU core
is challenging due to the concurrent execution of other back-
ground threads, such as Local Mapping and Lightweight loop
detection, controlled by the same operating system. This com-
petition for computational resources can introduce additional
end-to-end latency. To minimize such disturbances, we dedicate
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Fig. 9. Industrial inspection is carried out by drones equipped with edgeS-
LAM?2 within one of the world’s largest oil fields.

TABLE I
DETAILS OF DATA COLLECTION IN DIFFERENT SCENARIOS

No.of Path  No.of Path  No.of  Flight Speed
Scene Type
(Total) (with Loop) Frames (Avg.m/s)
Warehouse 36 32 34,900 0.6
Oil-Producing Area 71 56 63,012 4.8
Factory 81 68 84,355 7.0

one A-Core exclusively for Tracking. In our implementation, we
realize A-Core isolation by building the Linux OS with the boot
parameter isolcpus=<cpu #Al>.

Furthermore, simultaneous map access by both Tracking and
Optimization can introduce contention, subsequently increasing
tracking latency. To mitigate these effects, we adopt a double
map buffering strategy [37]. This methodology utilizes two dedi-
cated memory reservoirs: one hosting the current map necessary
for tracking, and another storing the map being updated through
optimization. Upon each optimization completion, the refreshed
map is shifted to its corresponding buffer, allowing the tracking
thread to transition smoothly to this updated map. This approach
ensures uninterrupted access and freshness of map data for the
tracking process.

V. EVALUATION

A. Experimental Methodology

Field Studies. We incorporate edgeSLAM?2 into the ArduPilot
APM flight controller and deploy it on AMOVLAB P450-NX
drones. We conduct a field study spanning three months, de-
livering real-time localization services for industrial inspection
tasks in one of the world’s largest oil fields, as shown in
Fig. 9. We select three representative scenarios for detailed
system performance evaluation, collecting 188 trajectories with
182,267 frames, as summarized in Table II. The warehouse
represents a typical indoor environment, while the oil-producing
area and factory exemplify complex industrial outdoor settings.
The drones communicate with the edge node via 2.4 GHz WiFi
in indoor environments, while in outdoor settings, it switches
to a mesh network. The maximum throughput in the outdoor
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mesh and indoor WiFi networks is 14.3 MB/s and 26.8 MB/s,
respectively. The edge side of edgeSLAM?2 is deployed on an
Nvidia Jetson AGX Xavier edge node, with its power consump-
tion capped at 30 W, within the range of available power supply
in industrial settings.

Metrics and Ground Truth. To evaluate system overhead,
we measure the bandwidth requirement (in MB/s), defined as
the average volume of data transferred per second. We assess
the real-time performance by recording the tracking latency,
denoting the time from image receipt to pose output. The lo-
calization accuracy is determined using the Absolute Trajectory
Error (ATE, in cm), a gold standard in SLAM algorithm evalu-
ation [38]. The ground truth for indoor localization is obtained
through Opti-Track [39], whereas Real-Time Kinematic (RTK)
is utilized for outdoor environments.

Baselines. We compare edgeSLAM?2 with three SOTA edge-
assisted SLAM systems, SwarmMap [13], Edge-SLAM [14],
and edgeSLAM [15]. Despite these systems not being designed
for the Zynq MPSoC, we ensure a fair comparison by de-
ploying them on the same platform. In our setup, we deploy
the Petalinux OS on the 4*A-Core and utilize OpenAMP for
controlling the 2*R-Core, fully exploiting the general computing
resources [40]. Beyond this distinction, they operate under the
same edge server and network conditions as edgeSLAM?2.

B. Overall Performance

1) Bandwidth Requirement: We first evaluate the bandwidth
requirement of edgeSLAM?2 and the three baselines in different
scenarios. As shown in Fig. 10(a), edgeSLAM?2 requires an
average bandwidth of 0.23 MB/s, 0.27 MB/s, and 0.43 MB/s
in the warehouse, oil-producing area, and factory settings, re-
spectively. Compared to the baselines, edgeSLAM2 achieves
a bandwidth reduction of at least 81.3%, 80.2%, and 89.4%
respectively. Such performance enhancement is credited to the
implementation of the upgraded edge-assisted SLAM paradigm,
paired with (¢) event-responsive map synchronization and (i)
observation consistency based map streamlining.

2) Localization Accuracy: Fig. 10(b) depicts the localization
performance of edgeSLAM?2 and comparative systems in dif-
ferent settings. The average localization error of edgeSLAM?2
is 5.3 cm, 7.6 cm, and 11.5 cm in the warehouse, oil-producing
field, and factory, respectively. edgeSLAM?2 outperforms three
baselines across all scenarios, particularly in the challenging
factory setting, which is characterized by poor network quality
and large-scale maps. Specifically, edgeSLAM2 outperforms
SwarmMap, Edge-SLAM, and edgeSLAM by 48.5%, 57.9%,
and 22.6%, respectively. This superiority can be attributed to the
innovative architecture that re-couples tracking and local map
optimization, which effectively mitigates potential performance
degradation caused by map update delay.

3) Tracking Latency: We also evaluate the tracking latency
of edgeSLAM?2 with the baselines. As shown in Fig. 10(c),
edgeSLAM?2 achieved an average latency of 23.7 ms and 24.6 ms
in the oil-producing area and factory, outperforming baselines
by at least 26.3% and 44.8%. Furthermore, the corresponding
95th percentile tracking latency in these three settings are 24.4
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Fig. 11.  Ablation study.

ms, 25.2 ms, and 26.0 ms, respectively, which is decreased
by >53.4%, >41.4%, and >62.1% compared to the baselines.
The above results underline the effectiveness of the delay de-
terministic tracking strategy in enhancing both the real-time
and deterministic capabilities of edgeSLAM?2, facilitated by the
software-hardware co-design approach.

C. Ablation Study

We conduct several experiments within the challenging fac-
tory setting to evaluate the effectiveness of edgeSLAM?2’s ar-
chitecture, implementation, and algorithms.

1) Effectiveness of Architecture: To evaluate the effective-
ness of the upgraded edge-assisted SLAM architecture, we
compare edgeSLAM?2 with two different architectural baselines
on the Zynq platform: ORB-SLAM3, where all tasks run en-
tirely on the mobile client with only the final constructed map
being synced, and SwarmMap, a recent method that adheres
to the tracking-optimization decoupled approach. As shown
in Fig. 11(a), ORB-SLAM3 syncs minimal data but suffers
substantial accuracy degradation due to resource exhaustion
from concurrent optimization operations. In comparison, edgeS-
LAM2 significantly reduces localization error and bandwidth
usage by 49.3% and 89.5%, respectively, compared to Swar-
mMap. These results underscore the pivotal role of the upgraded
edge-assisted architecture in edgeSLAM?2.

2) Effectiveness of Implementation: To evaluate the effec-
tiveness of edgeSLAM?2’s on-chip implementation, we replaced
the Zynq MPSoC on the mobile with a relatively lightweight
Jetson TX2 (Baseline I) and a high-performance Intel i7-9700
processor (Baseline II), while keeping the edge server config-
uration unchanged. This assessment examines the changes in
localization accuracy and latency performance of edgeSLAM?2
under different implementation scenarios.
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As shown in Fig. 11(b), owing to the superior processing
capabilities of 17-9700, Baseline II surpasses Baseline I in both
accuracy and latency aspects. On the other hand, edgeSLAM?2
showcases a substantial reduction in the 95th percentile tracking
latency by 18.8%, compared to Baseline II, incurring only a
minimal decrease in localization accuracy by 0.95 cm due to
local map optimization delay.

We further evaluate the implementation of Tracking in edgeS-
LAM?2 (Section IV-D). As shown in Fig. 11(c), employing
hardware adaptation on PL yields an average latency reduction of
68.9%. Furthermore, by applying both hardware adaptation and
resource isolation strategies, the 95th percentile tracking latency
of edgeSLAM? is further reduced by 8.5 ms. The above results
manifest the effectiveness of the software-hardware co-design
implemented on Zynq MPSoC.

3) Effectiveness of Algorithm: In warehouse and factory en-
vironments, we evaluate the bandwidth savings from the intro-
duced map streamlining strategy, which includes compression
and trimming techniques. In these experiments, the baseline
method transmits only the essential map segments for syn-
chronization. As depicted in Fig. 11(d), applying observation
compression coding (w/ Compression) reduces bandwidth usage
by more than 24.9% compared to the baseline. Integrating this
with map point trimming (w/ Both) further decreases bandwidth
consumption by over 55.1%. Furthermore, the map streamlin-
ing strategy proves to be more effective in complex factory
environments than in indoor scenarios, achieving a 72% data
volume compression and an average bandwidth saving of over
1 MB/s.

D. Parameter Study

We conduct a parameter study to understand the impact of
crucial parameter selection on the system performance.
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1) Impact of Number of Features: In visual SLAM, the num-
ber of feature points extracted per frame plays a crucial role in
the system’s performance. On one hand, extracting more feature
points allows for the association and creation of more 3D map
points, typically resulting in a more comprehensive map and
improved localization accuracy. However, extracting additional
feature points consumes more computational resources and in-
creases latency.

We evaluate the impact of the number of features on system
accuracy and latency. As indicated in Fig. 12(a), opting for
1,000 feature points over 200 leads to a 10.4 cm decrease in
localization error and a minor 1.2 ms increase in tracking latency.
The slight increase in latency is attributable to edgeSLAM?2’s
hardware-accelerated feature extractor, which processes feature
points in parallel (Section IV-D1). Utilizing a higher number of
feature points (>1000) does not yield significant improvements
in accuracy. Therefore, we identify 1,000 feature points as the
optimal number for extraction.

2) Impact of Map Trimming Ratio: In the process of map
point trimming (Section IV-C2), our strategy of sorting map
points by weight W, and progressively releasing them allows
us to manage the proportion of map points retained. Typically,
removing lower-quality map points does not affect localization
performance, yet an excessive trimming ratio could compromise
localization stability. As demonstrated in Fig. 12(b), when the
trimming ratio reaches 30%, the localization error reduces by
3.2% compared to the original untrimmed map. At a 60%
trimming ratio, the error marginally increases by only 0.64 cm.
However, escalating the ratio from 60% to 70% incurs a notable
spike in localization error by 3.8 cm. Therefore, we find a
trimming ratio of 60% to be optimal in practice.

3) Impact of Map Segment Length: Although the upgrade
architecture does not necessitate real-time synchronization for
local map optimization, edgeSLAM? still uploads stable map
segments to facilitate multi-agent collaborative mapping tasks
(Section IV-B Event #2). We examine how the map segment
length affects the data compression ratio, as illustrated in
Fig. 12(c). Larger map segments lead to more efficient map
streamlining but also result in lower frequencies of collaborative
map updates. In oil field scenarios, a compression ratio of nearly
80% is achieved when the keyframe count reaches 40, albeit
with an update delay of about 20 s. In the multi-agent inspection
task, edgeSLAM?2 opts for a keyframe number of 20 to strike
a balance between compression efficiency and the frequency of
collaborative mapping.

Trim Ratio
(b) Impact of Map Trimming Ratio

Keyframe Number
(c) Impact of Map Segment Length
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Fig. 13.  System robustness evaluation.

E. System Robustness Evaluation

We evaluate the robustness of under interference conditions in
a warehouse environment by selecting three common scenarios:
Normal, representing typical conditions with normal lighting
and no dynamic objects; Dynamic, representing a scenario with
workers moving around, which interferes with the SLAM to ex-
tract stable features; and Low-light, where a lack of illumination
significantly reduces the number of usable visual features.

As shown in Fig. 13, the localization accuracy of edgeSLAM?2
decreased by 45.3% and 32.1% in the dynamic and low-light sce-
narios compared to the normal scenario, respectively. In contrast,
Edge-SLAM’s accuracy decreased by 61.5% and 49.2% under
the same conditions.

Although edgeSLAM2 does not employ specialized algo-
rithms for these challenging scenarios, its upgrade edge-assisted
SLAM architecture enables faster map optimization compared
to traditional architectures. This capability helps mitigate the
rapid decline in map quality and localization accuracy in adverse
environments.

F. Multi-Agent Collaborative Mapping

The architectural design of edgeSLAM?2, coupled with its
synchronization and compression algorithms, empowers it to
naturally support efficient multi-agent collaborative mapping.
To verify the system’s performance in practical applications,
we utilize several drones for a collaborative inspection task in
a factory area. The drones’ flight paths intentionally overlap,
facilitating their integration into a global map. For experimental
repeatability, the drones log image data and timestamps, which
are later replayed and processed on multiple offline computing
platforms equipped with identically configured MPSoCs.

We compare edgeSLAM2 with the traditional edgeSLAM
architecture in terms of localization accuracy and latency, as
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Fig. 15.  Tracking latency analysis.

shown in Fig. 14. For edgeSLAM’s tracking-optimization de-
coupled architecture, the increase in client numbers necessitates
more frequent local map optimizations by the edge server, es-
calating computational demands and potentially delaying map
updates for clients, leading to performance degradation. With
the number of collaborating clients increasing from 2 to 4, there
was a decline in localization accuracy by over 32% and a latency
increase of about 21%.

Benefiting from the upgrade architecture that enables local
map optimization directly on mobile devices, the majority of the
computational load introduced by multi-agent activities does not
burden the edge, allowing edgeSLAM?2 to consistently achieve
low localization errors (< 15 ¢m) and maintain stable latency
(< 25 ms) in scenarios involving four-agent collaboration.

G. Efficiency Study

We analyze the latency of each component in Tracking. As
shown in Fig. 15, during tracking, edgeSLAM?2 averages 6.7
ms, 3.1 ms, 5.8 ms, and 8.5 ms for feature extraction, feature
matching, pose estimation, and pose optimization, respectively.
And it spends 15 ms on relocalization at Frame #25 when
tracking is lost. This rapid execution of crucial steps is thanks
to hardware adaptation and resource isolation (Section IV-D2).

Table I illustrates the latency of three critical modules in the
SLAM system that operate at different frequencies: Tracking is
executed for every input frame, while Local Map Update and
Loop Closing are performed approximately every 2 s and 40
s, respectively. Edge-SLAM adheres to the traditional tracking-
optimization decoupled architecture; thus, a complete local map
update consists of two parts: map synchronization (1.35 s)
between the mobile and edge and optimization (0.24 s) at the
edge. For edgeSLLAM2, despite our on-chip design reserving as
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TABLE III
DELAY COMPARISON ACROSS DIFFERENT MODULES

System Tracking Local Map Update leoqp
Optimization ~Synchronization 0sing
Edge-SLAM  449ms 0.24s 1.35s 6.3s
edgeSLAM2  24.6ms 0.56s - 7.1s
TABLE IV
ENERGY EFFICIENCY COMPARISON
Zynq MPSoC  Jetson TX2 Intel i7-9700
Frame Rate (fps) 42 14 38
Power (W) 4.6 6.8 52
Energy/Frame (m.J) 108 485 1368

much general-purpose computational resource as possible for
local map optimization (Section IV-A2), the processing is still
constrained by the low-power chip’s capabilities, resulting in a
0.56 s optimization delay. However, by integrating local map
optimization into the mobile client, edgeSLAM?2 eliminates the
map synchronization operation, thereby significantly reducing
the overall local map update latency. Additionally, the loop
closing process of edgeSLAM?2 is slightly slower (by less than
1 s) due to the need to transmit yet-to-be-synchronized map-
segments upon loop detection on the mobile device. However,
the low-frequency nature of loop closing makes the impact of
this additional delay almost negligible.

In terms of energy consumption, we deploy edgeSLAM?2 on
Zynq MPSoC, Jetson TX2, and Intel i7-9700, and analyze the
energy required per frame. As indicated in Table IV, Zynq MP-
SoC and Jetson TX2, compared to high-performance processor
17-9700, consume less power (< 10 W), making them suitable
for deployment on lightweight mobile devices. Furthermore, due
to the exceptional real-time performance of edgeSLAM2, when
adapted to the Zynq MPSoC, it reduces the energy required per
frame by 77% and 92% compared to the Jetson TX2 and i7-9700,
respectively.

VI. RELATED WORK

Edge-Assisted Visual SLAM. Visual SLAM has been a fun-
damental area of research in robotics and mobile systems for
several decades [7]. It addresses the dual tasks of mapping an
unexplored environment and simultaneously tracking the lo-
cation of the mobile device within it [2], [41], [42]. Recent
research [43], [44] seeks to enable real-time implementation
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of visual SLAM on mobile devices through edge offloading.
edgeSLAM [15] and Edge-SLAM [14] reallocate the resource-
intensive optimization to an edge server, retaining only the
lighter tracking module on the mobile client. However, this
segregation of the inherently intertwined tracking and opti-
mization tasks limits their performance in multiple aspects
(Section II-B). In an alternative approach, AdaptSLAM [45]
strives to execute both tracking and local mapping on the mobile
client by applying an adaptive mapping strategy in response to
resource constraints. Its effectiveness, however, is confined to
high-end devices (e.g., Intel 17-9700 K). Diverging from these
methodologies, edgeSLAM?2 reshapes the edge-assisted SLAM
paradigm by software and hardware co-design. By remodeling
the versatile open-source SLAM system ORB-SLAM3 [2], it
enables real-time visual SLAM on lightweight mobile devices.

Software-Hardware Co-Design for SLAM. The rise of hard-
ware and software co-design has empowered the parallelizable
and computationally-intensive SLAM [32], [34], [46], [47], [48],
[49]. Innovations like eSLAM [34] and ac 2 SLAM [47] have
developed FPGA-centric acceleration methods specifically for
ORB feature extraction and matching. m-BA [48], on the other
hand, has devised a hardware-friendly differentiation method
to speed up the BA optimization. These methods, while ex-
ploring SLAM performance enhancement via dedicated hard-
ware design, fall short of offering fully deployable systems
for real-world environments. Addressing this gap, edgeSLAM?2
distinguishes itself by harnessing the heterogeneous computing
platform in conjunction with edge-assisted mechanisms. It sys-
tematically identifies and abstracts key bottlenecks in the SLAM
algorithm and, building on the newly defined edge-assisted
SLAM paradigm, introduces a comprehensive hardware and
software co-design strategy (Section IV).

Multi-Agent Collaborative Mapping. Collaborative mapping
typically involves multiple SLAM-capable devices exploring the
environment concurrently, with their local maps merged and op-
timized on the central or edge server [13], [16], [17], [50], [51].
These global maps are then used to enhance the mobile devices’
local maps or for downstream tasks like navigation and obstacle
avoidance. Systems like C2TAM [51], CarMap [16] and CCM-
SLAM [17] focus on efficiently integrating multiple sub-maps
on the server, rather than supporting real-time performance or
map quality on mobile devices. SwarmMap [13] goes a step fur-
ther by alleviating the computational pressure on servers caused
by the multi-agent scalability issues under the traditional edge-
assisted real-time SLAM paradigm. In contrast, edgeSLAM?2,
within its upgrade edge-assisted architecture, naturally supports
real-time multi-agent collaborative mapping with tailored map
synchronization and compression strategies. Moving forward, it
can seamlessly integrate advanced techniques for collaborative
map merging, optimization, and compression, which are left as
future work.

VII. DISCUSSION

The edge-assisted paradigm is not only designed to relieve the
computational burden of running SLAM on lightweight mobile
devices but also to facilitate the integration of dispersed maps
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from different clients at edge node, which is essential for col-
laborative multi-agent mapping in real-world applications [13].

However, previous systems [5], [6], [14] based on the
tracking-optimization decoupled architecture upload local maps
solely for self-map and location optimization. As a result, these
frequently uploaded maps were often redundant and lacked
stability assessments, making them unsuitable for collaborative
mapping. The architectural upgrades introduced by edgeSLAM?2
eliminate the resource conflicts and inefficiencies caused by
frequent local map synchronization. This upgrade also allows the
mobile client to respond more flexibly to critical mapping events,
determining the appropriate map segments to synchronize and
the optimal timing for sharing.

edgeSLAM?2 fully leverages the enhanced map-sharing ca-
pabilities of the upgrade architecture. Compared to the previ-
ous system [52], it designs and deploys map synchronization
(Section IV-B) and compression (Section IV-C) mechanisms
tailored for multi-agent collaborative mapping tasks. This update
of system design is expected to lay the groundwork for fu-
ture systems based on the edgeSLLAM?2’s upgrade edge-assisted
SLAM paradigm, supporting the development of multi-agent
collaboration platforms.

VIII. CONCLUSION

We introduced the design and implementation of edgeS-
LAM2, an innovative edge-assisted visual SLAM system that re-
shapes the existing Tracking-Optimization decoupled paradigm
by relocating the local map optimization module from edge
to mobile. edgeSLAM2 (i) exploits the heterogeneous com-
puting units of the Zynq UltraScale+ MPSoCs, enhancing
mobile devices’ computational capacity, which accommodates
this architectural upgrade; and (ii) proposes a suite of tech-
nologies designed to align with this enhanced architecture
via the software-hardware co-design. From this foundation,
edgeSLAM?2 facilitates lightweight mobile devices to exe-
cute real-time, accurate SLAM tasks, both individually and in
collaboration.
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