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Abstract—Localization and navigation play a key role in many location-based services and have attracted numerous research efforts.
In recent years, visual SLAM has been prevailing for autonomous driving. However, the ever-growing computation resources
demanded by SLAM impede its applications to resource-constrained mobile devices. In this paper, we present the design,
implementation, and evaluation of edgeSLAM, an edge-assisted real-time semantic visual SLAM service running on mobile devices.
edgeSLAM leverages the state-of-the-art semantic segmentation algorithm to enhance localization and mapping accuracy, and speeds
up the computation-intensive SLAM and semantic segmentation algorithms by computation offloading. The key innovations of
edgeSLAM include an efficient computation offloading strategy, an opportunistic data sharing method, an adaptive task scheduling
algorithm, and a multi-user support mechanism. We fully implement edgeSLAM and plan to open-source it. Extensive experiments are
conducted under 3 datasets. The results show that edgeSLAM can run on mobile devices at 35fps and achieve 5cm localization
accuracy from real-world experiments, outperforming existing solutions by more than 15%. We also demonstrate the usability of
edgeSLAM through 2 case studies of pedestrian localization and robot navigation. To the best of our knowledge, edgeSLAM is the first

edge-assisted real-time semantic visual SLAM for mobile devices.

Index Terms—Indoor localization, real-time, edge computing, semantic visual SLAM

1 INTRODUCTION

NDOOR localization and navigation play a key role in many

location-based services. However, due to the excessive
signal attenuation and multi-path propagation [1], [2], [3],
[4], the Global Positioning System (GPS) fails to achieve the
desired accuracy and thus cannot be adopted for this pur-
pose in most indoor scenarios. While the innovations on RF-
based indoor localization techniques (e.g., Wi-Fi, RFID, and
Bluetooth) are going full steam ahead [5], [6], [7], [8], [9],
[10], few of these solutions are mature for real-world
deployment, either because of the low accuracy or high
infrastructure cost.

As another promising alternative, vision-based indoor
localization techniques, in particular, visual simultaneous
localization and mapping (visual SLAM), attracts more
attention in recent years [11], [12]. Visual SLAM utilizes a
sequence of images captured by a camera and inertial mea-
surement unit (IMU) readings to build the map of the ambi-
ent environment and estimate the current location of the
camera itself. Compared with RF-based solutions, visual
SLAM achieves an order of magnitude higher localization
accuracy (5cm) at the minimal infrastructure cost as camera
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and IMU units have become the standard components of
mobile devices on today’s market [13]. As research pro-
gresses, more SLAM-enabled applications arise for urban
modeling[14], express delivery[15], and industrial inspec-
tion [16]. In those scenarios, mobile devices also have to per-
form visual SLAM in real-time for a better localization
performance and scheduling of subsequent tasks.

Although the evolving hardware and software of mobile
devices (e.g., Samsung Galaxy 510 smartphone is equipped
with three HD cameras) guarantee the image quality and
IMU sensor precision for fine-grained visual SLAM, the
computational resources on mobile devices, unfortunately,
are still insufficient to meet the visual SLAM's ever-growing
computation demand. For example, as we experimentally
demonstrated, even ORB-SLAM?2 [12], a lightweight, func-
tionally limited visual SLAM system, still cannot work in
real-time (i.e., <15 fps) on the latest smartphone (e.g., Sam-
sung Galaxy 510 and Google Pixel 2). Straightforwardly
applying visual SLAM to mobile scenarios, on the other
hand, cannot achieve good performance because of highly
dynamic environmental changes (e.g., walking customers in
a shopping mall).

Recently, two new opportunities have arisen in the
design of real-time visual SLAM on mobile devices:

1) The emerging paradigm of edge computing [17],
[18], as well as advanced wireless technology
(5G [19] and Wi-Fi 802.11ad standard [20]), is power-
ful for solving computation-intensive tasks locally
and in real-time. It is thus possible to speed up the
visual SLAM by offloading the workload to an edge
server.

2)  The evolving computer vision (CV) techniques (e.g.,
Mask-RCNN [21]) now can recognize objects in an
image with very high accuracy. Therefore, it is
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Fig. 1. User interface of edgeSLAM. (a) Mobile client: Navigation instruction and local constructed map are displayed on mobile device.! (b) Edge

server: Optimized global map and user’s location are displayed.

possible to analyze semantic information from cap-
tured video and improve the SLAM performance.
However, realizing these intuitions is non-trivial and
faces four significant challenges:

o  Task decomposition. Simply transmitting all images to
the edge server is not feasible since it introduces
excessive bandwidth cost and transmission delays
(details in Section 2.3). Partitioning both visual
SLAM algorithm and semantic segmentation algo-
rithm into task units is also non-trivial as their func-
tion units are tightly coupled. As shown in Fig. 2, an
improper partition may result in redundant data
storage, exchange, and most importantly, system
delay, which in turn increases the algorithm latency.

e Task cooperation. The visual SLAM and semantic seg-
mentation algorithms are generally regarded as two
independent tasks without reusing intermediate
results. However, to achieve both low latency and
high accuracy, it is beneficial to share the intermedi-
ate results between these two algorithms so that
redundant computations can be eliminated or
minimized.

o Task scheduling. The computation resources on the
mobile device and edge server is highly unbalanced.
Meanwhile, the wireless link between these two
parts also varies from time to time. Task scheduling
strategy should be adaptive to the dynamics in com-
putation resources and wireless link quality.

e System scalability. As the scenario scales, an edge
server typically needs to serve multiple mobile cli-
ents. The expanded map data to be transferred,
video frames to be inferred, and redundant map ele-
ments to be optimized inevitably hurt the system
scalability.

In this paper, we present the design and implementation
of edgeSLAM, a real-time edge assisted semantic visual
SLAM service running on commercial mobile devices. edge-
SLAM leverages the state-of-the-art semantic segmentation
algorithm Mask-RCNN [21] to improve SLAM accuracy
and speed up the SLAM and semantic segmentation algo-
rithm by efficient computation offloading and data sharing,

1. The design of user interface for mobile part adapted from our pre-
vious work Pair-Navi [22].

and adjust the offloading strategy automatically to adapt to
the wireless link conditions, and make full use of the spatial
relationship between clients to save the resources for
enabling the multi-user support.

To find out the optimal task decomposition strategy, we
take the operation time, memory overhead, and the trans-
mission delay of each functional module into consideration
and conduct extensive experiments to profile the perfor-
mance of each module. We further analyze dependencies
among these functional modules and determine the
"hourglass position” to decompose the visual SLAM and
object detection algorithm.

To minimize the latency introduced by redundant data
transmission, we leverage that the scenes in most consecu-
tive frames are similar. For example, the same signboard
tends to appear in multiple consecutive frames. edgeSLAM
avoids per-frame object segmentation operation and reuses
the previous result from the last object segmentation until a
significant frame change is detected on mobile devices.

To accommodate dynamic link conditions, we design a
probing-optimizing strategy that first probes the network
conditions and then leverages such information to optimize
our task scheduling mechanism.

To scale up the system, we design a set of algorithms to
leverage the spatial relationship between the client maps
and reuse the intermediate results on the edge server, thus
archiving both real-time running of the clients and saving
the computation and storage resources to enlarge the server
capacity.

We fully prototype edgeSLAM’s server on an Ubuntu
edge server and the client on three different types of mobile
devices, including an Nvidia Jetson TX2 development
board, a Samsung Galaxy S10 and an Apple iPhone X. The
interface of edgeSLAM is shown in Fig. 1. Comprehensive
experiments are carried out under different network condi-
tions, such as Wi-Fi 5G, Wi-Fi 2.4G, and Cellular 4G. We
also examine edgeSLAM on two official datasets (TUM [23]
and KITTI [24]) and a self-labeled dataset from three build-
ings. The results demonstrate that edgeSLAM can achieve
average 35fps frame rate with 5cm localization accuracy
and 2% relative mapping error in all scenarios, which out-
performs existing systems by more than 10%. Our two case
studies further demonstrate that edgeSLAM achieves out-
standing performance in pedestrian localization task with
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Fig. 2. Typical Visual SLAM [12] architecture.

average 9.6cm accuracy and robot navigation task with
92.3% navigation success rate.
The key contributions are summarized as follows:

e We design and implement a complete edge-assisted
real-time SLAM system on smartphones. To the best
of our knowledge, this is the first time that multi-user
mobile semantic visual SLAM can work in real-time on
mobile devices.

e We measure each functional module’s operation
time and memory overhead in visual SLAM and
semantic segmentation, and ascertain the optimal
decoupling position and disassembly method to
deeply fuse SLAM and semantic segmentation and
determine task assignment between mobile and
edge. To make the system both adaptive in fluctu-
ated network conditions and fully scalable in multi-
user cases, we adopt an adaptive method to adjust
system parameters dynamically and leverage the
spatial relationship between clients.

e We extensively evaluate the performance of edge-
SLAM on under 3 datasets. The results show that
edgeSLAM achieves satisfying results in all scenarios.

e We open-source edgeSLAM ' to facilitate the commu-
nity to develop multi-user gaming, collaborative
drone mapping and other promising mobile applica-
tions based on real-time visual SLAM.

The rest of this paper is organized as follows. We present
the background and related works, as well as introduce the
motivation of our work in Section 2. Followed by an over-
view of edgeSLAM in Section 3. Key strategies and techni-
ques are presented in Section 4, followed by the dynamic
design of self-adaptation strategy in Section 4.4 and multi-
user support mechanism in Section 5. Experiments setup,
results and analysis are presented in Section 6. We finally
conclude our work in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Visual SLAM and Semantic Visual SLAM
Simultaneous Localization And Mapping (SLAM) consists
of the concurrent construction of a map model and the esti-
mation of the state of the robot moving within it. As the
vision-based sensors get ubiquitous, the SLAM that lever-
ages visual information has become the dominant method
for robot localization and mapping [13].

In recent years, ORB-SLAM [25], the state-of-the-art mon-
ocular visual SLAM work has become a widely used system

1. Code and data at https://github.com/MobiSense/edgeSLAM.

6987

Calculated Camera Pose
(Localization)
2D Feature Points

@ : Constructed 3D Map Points,
(Mapping) '

Pose Transformation

Fig. 3. lllustration of Visual Odometry.

—: Association between
3D and 2D points

- Acquire Camera Pose by
solving PnP problem

Frame 2

by both academic research and industrial applications for
its modular design and high accuracy. Further, ORB-SLAM
has become the representative design and base system of
the Visual SLAM community. As the Fig. 2 depicts, the
design of Visual SLAM represented by ORB-SLAM consists
of three components:

e  Tracking module estimates the coarse-grained pose of
the shooting camera based on the consecutive video
frames. When a new video frame arrives, the track-
ing module will extract its 2D feature points and
associate them with 3D map points > in storage. As
illustrated in Fig. 3, the 2D-to-3D feature points
matching will give us a rough camera pose on the
current frame.

o Local Mapping module then creates new 3D map
points via triangulation between two consecutive
frames [26]. An optimized camera pose can then be
obtained by solving a Bundle Adjustment problem.
This module repeatedly runs as the camera takes
more photos, resulting in a trajectory of the camera
pose, a map of the 3D landmarks, and the corre-
sponding keyframes®.

e Loop Closing module compares the features extracted
from a video frame with keyframes. If a keyframe is
found to be similar enough to the input video frame,
the loop closing module will then fine-tune the cur-
rent camera pose and optimize the map construction
based on the matching result.

While the conventional point-clouds-based map repre-
sentation remains the most widely used method for SLAM,
higher-level representations, including objects and shapes,
have been proposed with the development of computer
vision. Semantic mapping consists in associating semantic
concepts to geometric entities in a robot’s surroundings[13].
DS-SLAM[27] employs SegNet[28] and OctoMap[29] to gen-
erate dense 3D semantic map. Further, Node-SLAM[30]
achieves an object-level system with a shape inference algo-
rithm. Recently, Kimera[31] and Kimera-Multi[32] proposed
a novel representation that contains spatial concepts at dif-
ferent levels of abstraction. However, the computational
requirements and resource demands of dense map building
and object-level representation are considerably high and
too demanding for resource-constrained mobile devices.

Semantic segmentation is also used to remove the influ-
ence of dynamic objects in addition to creating semantic

2.Map points represent discrete 3D landmarks in the global
coordinate.

3. Keyframes are selected frames indicating poses and positions of
the corresponding camera.
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Fig. 4. Semantic Visual SLAM system architecture. Figure referred from
[22].

maps. Recent studies [33], [34], [35] have attempted to incor-
porate semantics into visual SLAM to improve robustness
in time-varying environments, such as moving objects and
pedestrians. A prior work [36] uses R-CNN [37] to classify
region proposals, which were subsequently refined by cate-
gory-specific coarse mask predictions. As shown in Fig. 4,
recent work [22] uses Non-rigid Context Culling (NRCC)
with Mask R-CNN [21], the state-of-the-art work for seman-
tic segmentation, to improve the localization and mapping
accuracy, which extracts the temporal objects (such as
pedestrians) on each video frame to minimize their negative
effect on both localization and mapping.

2.2 Edge-Assisted Strategy

Continuous vision analysis or vision-based applications like
VR/MR can be enabled by partially offloading computa-
tion-intensive tasks to cloud or edge cloud infrastructures.
However, most of the recent works [38], [39], [40] leverage
the edge-assisted strategy to only focus on the relative facile
object detection task. While we are riveted to semantic
visual SLAM, either segmentation or localization task is
insuperable on mobile devices and demonstrated to be
more complicated than detection task.

Edge-Assisted SLAM. With the popularity of the edge-
assisted paradigm in academia and industry, SLAM has
also been applied to the paradigm recently. Recent
works [41], [42], [43], [44] propose edge-assisted SLAM sys-
tems. However, both systems are either 2D SLAM or laser-
based SLAM, which need much fewer data transmission
and are less complex than tightly coupled Visual SLAM.
Edge-SLAM]I45] enables mobile devices to run visual SLAM
in real-time. However, the design principles behind it and
our work diverge. Edge-SLAM leverages the assistance of
the edge server to solve the growing complexity of the
SLAM system that runs on computation-constrained mobile
devices. Thus, Edge-SLAM’s client only uses an enhanced
VO, which runs Tracking and part of Local Mapping; the
server handles the rest. Due to the lightweight design of the
client, the map on the client is periodically replaced with
the one that the server optimized, interrupting the tracking
and mapping process and resulting in poor localization and
mapping accuracy. In the case of edgeSLAM, the clients are
more independent because of the Local Mapping module,
which allows the client to locate and generate the local map
without the help of the server. Furthermore, the map updat-
ing process is non-destructive, which keeps the clients’ orig-
inal maps and only synchronizes them with the server-
optimized ones. The goal of edgeSLAM is to find an optimal
decoupling and re-assignment approach for seamlessly

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 12, DECEMBER 2023

splitting the entire SLAM system into client and server,
which can serve as an example and reference for other
SLAM systems interested in adopting the edge-assisted
paradigm.

Cooperative SLAM. Cooperative SLAM refers to multiple
clients working together to solve the SLAM problem, which
has been explored in recent works. In most cases, a power-
ful server is used to collect, fuse, and optimize the maps cre-
ated by the clients. This paradigm shares some similarities
with the edge-assisted SLAM system, whereas edge-
assisted SLAM concentrates more on real-time performance
because of the vicinity of the edge server. Cooperative
SLAM systems, on the other hand, focus on solving collabo-
rative mapping and localization with higher accuracies and
less time/bandwidth. [46], [47] proposed cooperative
SLAM systems with clients that only use Visual Odometry
(VO). Although VO is sufficient for short-term localization,
it is insufficient for long-term mapping due to cumulative
drifts. [48] recently presented a collaborative system that
runs Tracking and Local Mapping on the client, and only
maintains the latest map with limited size. Map fusion and
optimization are performed on the server. This work
focuses on the collaborative mapping task on multiple
Unmanned Aerial Vehicles (UAVs), which involves com-
munication, data management, and information sharing
between clients. Similarly, a recent study [49] also presented
a collaborative SLAM system, focusing on data transmission
minimization, service quality, and global map management.
However, edgeSLAM addresses the optimal splitting strat-
egy of the Semantic SLAM system, with the goal of achiev-
ing a real-time SLAM system at 30 fps in a fluctuating
network environment.

2.3 Latency and Accuracy Analysis
Running semantic visual SLAM on mobile devices is chal-
lenging due to its extensive computation overhead. For
example, the classical visual SLAM algorithm ORB-
SLAM [25] works at a rate of only 10fps when running on
the Samsung Galaxy S10 smartphone, which is far lower
than the real-time requirement (> 30 fps [22], [40]). Beyond
the real-time issues, the lower processing frame rate actu-
ally reveals two shortcomings: (i) the efficiency of the
SLAM task processing could not match the camera sam-
pling rate, which eventually results in a misalignment
between the displayed image and the localization result;
and (4¢) the SLAM tasks occupy a large amount of comput-
ing resources on mobile devices, hindering the devices from
performing upper-layer tasks that could need additional
computing power as SLAM is typically a service to identify
the location or recognize a place. This frame rate will drop
sharply when the semantic segmentation algorithm (e.g.,
Mask-RCNN) runs parallel to SLAM on mobile devices. Off-
loading the entire computation to the powerful edge server,
on the other hand, may cause considerable latency. To better
understand this transmission latency and its impact on the
localization and object segmentation performance, we con-
duct experiments detailed below.

Latency Analysis. We model the end-to-end latency (from
capturing a video frame until we obtain a camera pose) of a
semantic visual SLAM solution as follows:
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latency with different wireless connection link.

tege = tupload + tinfer + tdownload
tinfer = max(txrec , tr) + tm + e oY)

where t,pl0ad and taownload Tepresents the delay for uploading
an image to an edge server and downloading the result to
the mobile device, respectively. ¢,z represents the delay of
running semantic visual SLAM on an edge server, which
consists of the time consumed for semantic segmentation
txrec, tracking tr, local mapping tra, and loop closing
module ¢, respectively.

We measure the latency of each functional module in
various wireless link connections and show the result in
Fig. 5a. From the result, we can see that offloading the entire
computation to an edge server introduces significant latency
(280ms on Cellular 4G link, 270ms on Wi-Fi 2.4G link, and
260ms on Wi-Fi 5G link, respectively). In other words, the
offloading-all mechanism only gets 4fps over all three wire-
less links. While SLAM and semantic segmentation can be
further accelerated by leveraging a more powerful edge
server, the uploading and downloading latency, however,
still takes 48ms, which sets an upper bound of the achiev-
able frame rate (20fps when ignoring the inference latency).

Accuracy Analysis. We further conduct an experiment to
understand the impact of different delays on localization
accuracy and semantic segmentation accuracy. In the
experiments, we record the 3-D position of the camera
reported by the visual SLAM algorithm and calculate the
distance between the inference result and the ground-truth
(measured by a laser ranger) using the bias Euler-distance
metric. We also use the Object Keypoint Similarity
(OKS) [50] metric to measure the accuracy of keypoints in
each group in the object keypoint segmentation task.

Fig. 5b shows the localization and semantic segmentation
accuracy as a function of end-to-end delay. We observe that
the localization error maintains a very low level when the
end-to-end latency is low (i.e., five frames delay). The locali-
zation error then reaches Im as we increase the end-to-end
delay to 20 frames (about 666ms). The segmentation accu-
racy shows a similar trend: it decreases from over 90% accu-
racy to less than 15% accuracy as we increase the end-to-
end delay from 5 frames to 20 frames. On the one hand, the
decreased segmentation accuracy impairs the effectiveness
of the non-rigid context removal, causing degraded overall
localization accuracy. On the other hand, the client can not
get the timely optimized map due to increased latency, so

the localization errors accumulate over time. This result
demonstrates that the end-to-end latency has a significant
impact on both two algorithms” performance.

3 SYSTEM ARCHITECTURE

To overcome these limitations, we propose edgeSLAM, a
semantic visual SLAM system for mobile platforms, achiev-
ing both accuracy and real-time simultaneously with the
help of edge computation resources. To reduce the latency
caused by offloading the semantic SLAM task, edgeSLAM
decouples the integrated visual SLAM process into two sep-
arate pipelines. At a high level, as shown in Fig. 6, these two
parts are connected through a wireless link: Mobile tracking
and Local Mapping parts are on the mobile devices (smart-
phone for people or development board for robots), and
Edge Optimization and Segmentation part is on an edge side.
The former pipeline tracks the pose of a camera and con-
structs a local map simultaneously. Parallelly, the latter
pipeline segments image frames at the pixel-level, optimizes
the roughly estimated pose, and further maintains the
remote maps. (To distinguish the maps on client and server,
the maps on the server are remote maps, and the maps on
clients are local maps.) Communications between two sides
occur when keyframes are selected by the mobile pipeline.
The selected keyframes and their related map points, i.e. the
newly constructed local map, are uploaded to the edge side.
The server pipeline begins when it receives the local map
from a client. It first saves the map on the server and then
tries to merge the remote map into the global map, in which
the maps are from all clients and in the same coordinate sys-
tem. Next, it checks the similarity between the remote map
and the global map, and eliminates redundancy to exploit
memory usage. Lastly, the server optimizes the remote map
by geometric constraints and sends the optimized map and
segmentation result back to the client. The client corrects
the camera pose and the local map, and displays the map in
the current scene when receiving optimized results. Also,
the segmentation result is used for semantic mask transfer
among camera frames. The design of edgeSLAM is to run the
separated pipelines in parallel. The client keeps tracking
and constructing the local map while the edge server opti-
mizes the maps the client uploaded. In this way, the client
can continuously track and display the accurate camera
ose and constructed map in real-time.
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Fig. 6. edgeSLAM architecture.

In a nutshell, edgeSLAM is a real-time mobile semantic
visual SLAM system. The elaborate design of edgeSLAM lies
in fourfold:

e We decouple the whole visual SLAM into fine-
grained modules and re-assign these modules
between the mobile device and the edge server,
guaranteeing the mobile pipeline to run in real-time.

o We design a Parallel Local Tracking and Global Optimi-
zation workflow. The time-consuming and complex
optimization procedure is hidden by mobile local
tracking and mapping pipeline, meanwhile ensuring
the accuracy.

e We adopt a Semantic Mask Transfer Strategy. The
pixel-level semantic information of a keyframe can
be transferred to related non-keyframes, which dra-
matically reduces the inference latency and fulfill
semantic segmentation tasks on mobile devices.

o We design a Multi-user Support mechanism that ena-
bles the semantic mask to reuse between clients and
eliminates the map redundancy to exploit the mem-
ory usage, allowing the edge server to support more
clients at a time.

In the following sections, we will present the details of

these strategies.

4 REAL-TIME MOBILE SEMANTIC VISUAL SLAM

4.1 Decoupling and Task Re-Assignment
of Visual SLAM

In ORB-SLAM, pose estimation and tracking in Tracking
module, as well as optimization-related parts in Local Map-
ping and Loop Closing modules contribute most of the com-
putation latency. On mobile devices, both pose estimation
and map points creation require more than 33.3ms, which
makes visual SLAM insuperable to run at > 30fps. More-
over, they all rely on map point and keyframe databases for
global optimization. These facts are exemplified in Fig. 7,
which breaks down the execution latency of the ORB-SLAM
task.

We consider that the decoupling and task re-assignment
method should fulfill three énrinciples: First, the mobile
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client should run in real-time, which means the total latency
of its modules is no more than 33.3ms. Second, functional
modules that frequently interact with the keyframe or map
point database for further optimization should be executed
on the edge server. Breaking the data dependency will also
lead to high data transmission latency. Last but not least,
same as the original visual SLAM, both localization (track-
ing camera pose) and mapping (creating map points) tasks
must run on mobile devices because the user/robot needs
the guide from the real-time localization result.

The task assignment strategy in edgeSLAM fulfills the
above principles. As shown in Fig. 6, the mobile client esti-
mates the relative rough camera pose from feature points
extraction and matching modules. In the design of edge-
SLAM, the client can localize itself in the local map and
simultaneously construct the map of the surrounding envi-
ronment in the short term. As for the long term, localization
and accumulative error correction are done by the edge
server. To achieve this, the client maintains a local map
point database, which is used to estimate the camera pose
and generate new map points. In order to keep the tracking
latency low, edgeSLAM only keeps the latest 10% map points
of the server’s remote map points database. Meanwhile, the
edge server executes the time-consuming and resource-
aware optimization procedures, including optimizing pose
and map, maintaining remote map point and keyframe
databases, and storing the global databases from multiple
clients. After receiving a keyframe, the edge side sends the
optimized pose and updated map points positions back to
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Fig. 7. Operation latency of each function unit in visual SLAM.
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(b)

-
e 5

X
e |

(d)

Fig. 8. lllustrations of optimization of the local constructed map. A com-
plex local constructed map (a) before optimization on the mobile device,
in which the camera poses of some frames in the red circle are deviated
from the original path, and (c) after optimization, in which the camera
poses are correct and smooth. Similarly, (b) and (d) show a simple tra-
jectory on the mobile device before and after optimization, respectively.

the mobile side; and the mobile side accordingly calibrates
the accumulative tracking and mapping error.

In the ORB-SLAM system, when the client fails to estimate
the current camera pose, the client will attempt to recover the
camera pose by using the keyframe database. This procedure
is referred to as Relocalization. In edgeSLAM, we design a hier-
archical relocalization mechanism that enables the client to
recover the camera pose from both the local and remote key-
frame database. The client first searches the local keyframe
database, which only contains part of the keyframes. If the
client can find a keyframe by which the pose can be esti-
mated, it will utilize the keyframe to calculate the camera
pose. Otherwise, it sends the current camera frame to the
edge server. On receiving the frame, the edge server searches
it in the global keyframe database containing all the key-
frames. If the server finds a keyframe that can relocalize the
current frame, the keyframe and its surrounding keyframes
will be sent back to the client, helping the client to estimate
its pose. Otherwise, the client will reset the generated map
and restart the tracking and mapping processes.

4.2 Parallel Local Tracking and Global Optimization
The server needs to send the optimized remote map to the
client. However, the data volume of the entire map is enor-
mous, which dramatically increases the data serialization
time and transmission latency. We further design a mecha-
nism to reduce the data volume, as illustrated in Fig. 8. edge-
SLAM employs an incremental updating strategy, which
only sends the map points and keyframes, i.e. map elements,
modified during this updating period. edgeSLAM tracks the
changes of the map elements rather than checking the modi-
fication status of the map elements individually, thus saving
the computation and processing time. Precisely, the map
point and keyframe databases are monitored. Once a map
element is modified (creation, deletion, and position/pose
changed), it will be inserted into a set structure. This data
structure guarantees the uniqueness of each element, which
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Fig. 9. lllustration of semantic mask transfer strategy.

means the element will not be recorded twice. At the end of
each updating period, the server sends the set containing the
modified elements to the client. edgeSLAM also applies this
strategy to the client so that maps between the client and
server can be synchronized periodically.

By doing so, edgeSLAM incrementally optimizes the cli-
ent map, meanwhile decreasing the transmission latency
and serialization/de-serialization time.

4.3 Semantic Mask Transfer Strategy

Same as many recent works, we adapt Mask R-CNN for
NRCC. Mask R-CNN is a famous instance segmentation
framework. It aims to separate different instances in an
image via a segmentation mask for each instance. By apply-
ing the semantic mask, the SLAM system can benefit from
getting rid of the influence of the dynamic objects and thus
gets a higher accuracy. However, the cost of high accuracy
is time-consuming and resource-aware computations. As
shown in Fig. 5a, it results in more than 150ms latency to
infer a video frame, which is the bottleneck of semantic
visual SLAM.

In edgeSLAM, we design a semantic mask transfer strat-
egy, which can obtain the segmentation information on
mobile in real-time. More specifically, as illustrated in
Fig. 9, only keyframes are uploaded to the edge server. The
semantic masks of keyframes are computed on the server
and sent to the client. As for non-keyframe, the pixel-level
semantic information can be transferred from the semantic
mask of its nearest keyframe. The rationale behind the
transfer strategy is: First, the feature points matched
between two consecutive frames are more likely to belong
to the same object category according to the matching algo-
rithm (DBoW2) in ORB-SLAM. Second, in a typical walking
scenario with a speed of 1m/s, a user (or robot) moves less
than 4cm during 33.3ms (30fps). Therefore, the changes of
the scene between two consecutive frames are not signifi-
cant in most situations. So the semantic mask of the selected
keyframe can be transferred to its near remaining key-
frames. Once the mobile client receives a semantic mask,
the semantic information of the related remaining key-
frames will be updated. Notice that the hypothesis of the
module is the accurate matching of the feature points on the
dynamic objects. Thus, the semantic mask is supposed to be
generated from the segmentation-based method like Mask
R-CNN instead of the detection-based method like
YoloV4 [51]. The Semantic Mask Transfer Strategy helps to
alleviate the workload of the edge server and enables the
mobile client a higher accuracy.
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(a) Frame# 360

(b) Frame# 375

(c) Frame# 390

Fig. 10. lllustration of keyframe selection strategy. (a) A reference Keyframe. (b) A non-keyframe, more than 90% of the extracted feature points are
matched with (a) previous Keyframe. (c) A new keyframe, whose associating rate with (a) is less than 80%.

4.4 Self-Adaptation Strategy Design

We find several parameters available for adjustment in the
keyframe selection function for better adaptation to diverse
environments. By adjusting these parameters dynamically,
edgeSLAM achieves relatively optimal results under various
computing power restrictions and network conditions.

Oriented FAST and rotated BRIEF (ORB) feature points [52]
are commonly adopted in the ORB-SLAM system for their
sufficient matching accuracy and low computation overhead.
The ORB feature employs the Gaussian Pyramid to ensure the
robustness of the feature matching, including scale and rota-
tion invariance. An image pyramid is a multiscale representa-
tion of an image, where each level contains the downsampled
version of the previous level. By detecting key points in each
level, the ORB feature can achieve scale invariance.

Different Gaussian Pyramid layers (n;, nlevels) lead to
diverse ranges of key points search. With more layers, more
computing power consumption is also needed. Thus, the
basis of the keyframe selection is to adjust the related param-
eters when the end device has limited computing power.

Specifically, there are four principles of the keyframe selec-
tion in edgeSLAM’s design, which must be met when generat-
ing a new keyframe. The following are the four principles:

1)  More than f.;, (mMinFrames, 20 by default) frames
have passed from the last keyframe selection on the
mobile device, or the number of keyframes in the
map is less than f, frames.

2) Less than fy.x (mMaxFrames, 60 by default) frames
have passed from the last optimization for local con-
structed map.

3) The ratio of extracted feature points in the current
frame compared with the previous keyframe should
be at least « (0.4 by default).

4) The ratio of matched feature points in the current
frame compared with the previous keyframe cannot
exceed B (0.9 by default).

Condition 1 ensures good optimization, and condition 3
provides good tracking. Both the conditions enhance the
quality of selected keyframes. Conditions 2 and 4 reduce
the redundancy of keyframes and ensure their uniqueness
and representativeness.

Considering the principles above, edgeSLAM can appro-
priately increase fmax, fmin and o or reduce B under poor
network conditions. An illustration of the keyframe selec-
tion strategy is shown in Fig. 10.

Apart from the variables we mentioned above, the non-
maximum suppression parameter n,, in the Mask R-CNN
framework is also an essential parameter, which makes a
trade-off between segmentation accuracy and latency. We
will also adjust it to adapt to different requirements in
diverse environments.

Similar to DeepDecision [39], the Self-adaptation Strategy
takes environment measurements (network bandwidth B
and network latency L) as inputs and defines the network
condition N as

M
N=L+ E, 2)
where M is the data size for each frame (1280 x 720 pixels in
edgeSLAM). Note that the arguments L and B reflect the net-
work condition (latency, bandwidth, and congestion), mak-
ing it feasible to adapt to the network fluctuation caused by
the multiple agents and suitable for multi-user cases.

Furthermore, edgeSLAM employs the optimization strat-
egy tuple (fmin, fmax, @, B, 7, ). Specifically, there are 5
configuration tuples in edgeSLAM to adapt to various net-
work conditions, which can be seen in Table 1.

The rationale of the self-adaptation strategy is to adjust
the data transmission of the newly generated keyframes
along with the NRCC traffic by controlling the keyframe
generation rate. Moreover, the strategy also adjusts the com-
putation costs by changing the ORB Pyramid levels. Take
the challenging poor network conditions as an example, the
client increases the keyframe generation interval so that
fewer keyframe data will be transmitted to the edge server
and more frames between adjacent keyframes apply the
Semantic Mask Transfer Strategy to reuse the semantic mask
of the last keyframe. Additionally, with fewer levels in the
ORB Pyramid, there is a lower demand for computation
(i.e., feature extraction, matching, and the pose tracking

TABLE 1

Different Configuration Tuples in Self-Adaptation Strategy
Configuration#  fuin  fmax @ B n ny N (ms)
1 10 40 03 09 8 08 (0,10]
2 20 50 03 09 6 08 (10,15]
3 20 60 04 09 6 08 (15 35]
4 30 720 05 08 4 07 (3550]
5 40 80 05 07 4 0.6 (50,300

Authorized licensed use limited to: Tsinghua University. Downloaded on March 07,2025 at 06:49:23 UTC from IEEE Xplore. Restrictions apply.



CAO ETAL.: EDGE ASSISTED MOBILE SEMANTIC VISUAL SLAM

based on them) on mobile devices. Eventually, the client
could still achieve real-time performance at the expense of
slightly degraded system accuracies (demonstrated in
Section 6.5).

5 MuLTI-USER SUPPORT

Multi-user SLAM has been widely used in many scenarios,
such as fire rescue, logistics sorting, and indoor navigation.
In such cases, multiple clients need assistance from the edge
server, which accounts for a large partition of computing
resources. However, the resources on the edge server are
limited, and the server may easily be overloaded when serv-
ing multiple clients.

At a high level, there are three challenges in the multi-
user support problem:

e The maps from different clients are of various coor-
dinate systems, which means the map data are iso-
lated spatially. On the one hand, there are overlaps
and redundancy in the global map. On the other
hand, the extra information brought by various cli-
ents cannot be used for cross-validating the accuracy
of the maps and not to mention further optimizing
them. Thus, this isolation harms both the mapping
accuracy and memory utilization rate.

e As the number of clients grows, the edge server
needs to handle more semantic mask calculation.
The mask calculation latency increases accordingly,
which prevents the real-time running of the mobile
clients and harms the localization accuracy.

e The total map size scales rapidly with the growing
number of clients and the system’s running time,
exceeding the memory limit. We also find that the
trajectories of the clients running at close range may
easily overlap, which along with the revisit of the
same place, produce severe data redundancy, pro-
hibiting the scalability of the system. The memory
usage becomes the bottleneck of the scalability issue.

To solve the three challenges, we find that keyframes are

similar when the clients share the same mapping area and
can be utilized with a global map. Thus, we design a mecha-
nism that optimizes the redundant computation and mem-
ory storage to enable the edge server to support more
clients.

5.1 Map Merging

Most of the trajectories are overlapped and can be merged
into a global map. The map merging is done by the co-visi-
bility of the keyframes. If there are at least 8 pairs of the
matched feature points, the relative transform of the two
keyframes can be computed, and with the original poses of
the keyframes, the transform between their coordinate sys-
tems can be derived. Then, all the keyframes and map
points in this map can be expressed in another coordinate
system. In edgeSLAM’s design, the map merging task is
treated as a loop closure event, which is implemented by
the Loop Closing module. If there are two maps merged,
edgeSLAM marks the coordinate system of the first map as
the reference coordinate system. edgeSLAM also stores the
transforms between all maps and the reference map. B
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doing this, all maps that overlap with other map(s) share
the same coordinate system, and thus all keyframes and
map points are utilized in the global coordinate system.

5.2 Server Semantic Mask Transfer

As described in Section 4.3, NRCC is a time-consuming and
resource-aware process. Parallel requests from multiple cli-
ents exacerbate the resource usage, causing a longer average
response time and decreasing the total number of clients the
server can support. Thus, edgeSLAM applies the aforemen-
tioned Semantic Mask Transfer Strategy on the server. Specifi-
cally, it compares the newly received keyframe X with
those in the server’s global keyframe database by the fast
matching algorithm(DBoW?2). If there is a keyframe Y more
than N%(70%, in our case) similar with the keyframe X, the
semantic mask of the keyframe X is transferred from the
mask of keyframe Y. Otherwise, the semantic mask of the
keyframe X is computed as usual. Reusing the previous
results reduces the computation time and computing
resources, yet the server with the same configuration can
support more clients.

5.3 Redundant Keyframe Elimination

Multiple clients may often visit the same place, which trav-
els and maps the same area several times, causing redun-
dancy and increasing memory usage. Thus, we design a
mechanism to eliminate redundancy. edgeSLAM maintains
a K-D tree of the keyframe positions. The K-D tree acceler-
ates the searching of the nearby keyframes by its pose. Once
the server receives a keyframe X, it first searches its nearest
keyframe Y. Then a similarity check based on feature points
is performed between keyframe X and Y, in case the two
keyframes are only in the same position but with different
poses. If the match ratio is above 70%, edgeSLAM project the
keyframe X’s feature points to the keyframe Y’s coordinate
and merge the transformed feature points with keyframe
Y’s. Lastly, keyframe X removes its original data and only
keeps a reference to the keyframe Y, becoming an alias of
the keyframe Y. In this way, all accesses on keyframe X are
forwarded to keyframe Y, and all modifications to keyframe
Y are also reflected on keyframe X. By doing this, edge-
SLAM decreases the redundancy of the global map and
thus enhances the workload of the edge server.

6 EXPERIMENTS AND EVALUATION

6.1 Implementation

The implementation of edgeSLAM follows the system work-
flow in Fig. 6, and is developed on ORB-SLAM [12], the
state-of-the-art visual SLAM system. Specifically, we adopt
a Server-Client structure by splitting and reusing the ORB-
SLAM modules.

Client. We implement the client part of edgeSLAM on
mobile devices (Nvidia Jetson TX2, Apple iPad Mini 5,
iPhone X, and Galaxy S10) mostly reusing the Tracking and
Local Mapping modules of ORB-SLAM. To begin with, we
continuously capture video frames by a camera on devices
using OpenCV [53] API and JetPack Camera API and feed it
to Mobile Tracking and Local Mapping modules.

ORBextractor () function extracts ORB feature points.
Meanwhile, CUDA (only on the development board)
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accelerates the feature extracting process [54]. This process
is followed by featurePointsMatching () function to
calculate associations between extracted feature points. Fur-
thermore, featureCulling() takes over the procedure,
which leverages semantic mask to ensure the rigidity of the
environment. Keyframe decision function isKeyFrame ()
will be finally performed according to principles described
in Section 4.4. It determines whether the newly created
frame is a keyframe. If one keyframe is selected, it is
uploaded to the edge server. Meanwhile, poseEstima-
tion() and localMapGeneration() estimates the
coarse-grained camera pose and construct a map. Once cli-
ent receives a map slice sent from edge server, Update ()
function optimizes pose and map. As for the Self-Adaption
Strategy, we use ping, a network performance evaluation
tool using ICMP protocol, to get the network latency and
iperf, the bandwidth measurement tool, to get the data link
bandwidth.

Server. We implement the server part of edgeSLAM on the
edge server, and reuse the visualization with some user
interface modifications via OpenCV, and most of ORB-
SLAM modules including Tracking, Local Mapping, Loop Clos-
ing and so on. The server is equipped with Intel(R) Xeon(R)
CPU E5-2620v4 of 2.10GHz main frequency and 256G
RAM, running the Ubuntu 16.04 operating system. For
Mask R-CNN, we use TITAN V GPU with CUDA version
9.1.85. We apply our Mask R-CNN models with the ResNet-
FPN-50 backbone, and the network parameters are pre-
trained on COCO image Dateset [55]. The Mask R-CNN
code is implemented in python-3.6.5 with pytorch-0.4.0 [56].

Remote Data Interaction. The Remote Procedure Call
(RPC) refers to inter-process communication (IPC). How-
ever, different processes have distinct address spaces. The
RPC model helps to deal with the communication between
the client and server. The client calls a function with its orig-
inal argument(s), and the function is invoked automatically
on the server. It hides application protocol details, argument
parsing, message passing, and network communication
process, acting as an intermediary conveying function call-
ing information. The RPC model bonds the client and the
server together, which is perfectly suitable for the divided
structure of edgeSLAM. By applying a widely-used RPC
framework gRPC [57] developed by Google, edgeSLAM
achieves efficient data transmission and remote function
invocation.

edgeSLAM leverages the boost serialization library [58]
which is used to reconstitute an equivalent structure in
another program context. Specifically, the library serializes
C\raise.22ex+\raise.22ex+ objects into binary form, which
is convenient to transfer over the network, and also de-seri-
alizes the binary data into C\raise.22ex+\raise.22ex
+ objects. Moreover, the strategy helps to encode the struc-
ture to binary stream and embed it in Protobuf [59] package
as the RPC arguments, thus, saving network bandwidth
and accelerating the data transmission rate.

6.2 Experiment Setup

We have performed an extensive experimental validation of
our system in two standard SLAM datasets: TUM [23] and
KITTI [24]. The TUM benchmark is an excellent dataset to
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evaluate the accuracy of camera localization as it provides
several sequences with accurate ground truth obtained with
an external motion capture system. The odometry bench-
mark from the KITTI dataset contains 11 sequences from a
car driving around a residential area with accurate ground
truth from GPS and a Velodyne laser scanner. The dataset is
exceedingly challenging for monocular vision due to fast
rotations and areas with a lot of foliage, making data associ-
ation more difficult.

We evaluate the general localization accuracy of edge-
SLAM, in 16 hand-held indoor sequences of the TUM RGB-
Monocular benchmark. Moreover, in 5 sequences from the
KITTI dataset, we evaluate the tracking accuracy of camera
pose and efficiency of the constructed map optimization.
We have carried out all experiments with an Nvidia Jetson
TX2 development as a mobile device and a desktop com-
puter as an edge server. The configurations are shown
above. In our experiments, we feed the image from datasets
at 30 fps into the mobile device. edgeSLAM runs in real-time
and processes the images precisely at the frame rate they
acquired.

Furthermore, to extensively evaluate the performance of
the edge-assisted design of edgeSLAM, we compare edge-
SLAM with ORB-SLAM and Mask-SLAM. The former is the
original baseline of our edgeSLAM without edge-assisted
method and NRCC. The latter is the system used in recent
works [22], [60]. They execute NRCC for each video clip
and fuse the semantic information with ORB-SLAM. How-
ever, neither of these comparative methods can work on
mobile devices in real-time. Thus, the entire processing
tasks of the comparative systems are fully offloaded to the
edge server once the mobile device captures a frame, i.e.,
the client acts as a data collector sending the frames to the
server, and the edge server feeds the frames to the whole
SLAM system. After the system outputs the device’s loca-
tion, the server sends the result back to the client and the cli-
ent display the received location. Besides, we also compare
edgeSLAM with Edge-SLAM [45], the latest edge-assisted
SLAM system. Different from edgeSLAM, Edge-SLAM
moves Local Mapping module to the edge server and only
keeps the Tracking module and fixed size of the map on the
mobile device.

6.3 Performance Comparison
6.3.1 Localization Accuracy in TUM Dataset

We first examine the localization accuracy of edgeSLAM.
Fig. 11 depicts the performance of the proposed edgeSLAM
as well as three other comparative systems in indoor locali-
zation scenarios. As shown, the 95th percentile localization
accuracy of edgeSLAM, Edge-SLAM, ORB-SLAM, and
Mask-SLAM is 1.97cm, 2.92cm, 3.66cm, and 6.22cm, respec-
tively. edgeSLAM outperforms the other three approaches
by more than 30%. The delightful result comes from the low
end-to-end latency, which is ensured in edgeSLAM by the
edge-assisted method and task assignment strategy. Com-
pared with Edge-SLAM, our system achieves higher locali-
zation accuracy benefiting from the NRCC module, which
gets the system rid of the influence of the dynamic objects.
Further, we keep Local Mapping on the client so that the map
is generated and maintained on the mobile device, which
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Fig. 11. Localization accuracy on TUM dataset.
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Fig. 17. Impact of self-adaptation on accuracy.

enables stable tracking and fast relocalization once the
mobile device is lost.

6.3.2 Pose Tracking Accuracy in KITTI Dataset

We further examine the camera pose tracking accuracy of
edgeSLAM in KITTI camera rotation dataset. We calculate
the Relative Rotation Error (RRE, an essential evaluation
indicator in KITTI dataset, means the average relative rota-
tional error among the whole trace) of the tracking result
compared with the ground truth. The performance of edge-
SLAM as well as three comparative methods are depicted in
Fig. 12. The tracking accumulative bias of edgeSLAM is
within 0.22 degrees for one-meter length traces, which out-
performs Edge-SLAM, ORB-SLAM and Mask-SLAM by
4.0%, 5.1% and 17.6%. The KITTI dataset is a challenging
benchmark for monocular vision, as it contains a lot of
dynamic objects like moving cars. Thus, systems like ORB-
SLAM and Edge-SLAM without NRCC can be easily lost in
the dynamic environment. Although Mask-SLAM utilizes
NRCC, the high end-to-end latency causes the severe locali-
zation errors which can be avoided by the low-latency
design of edgeSLAM.

6.3.3 Mapping Precision in KITTI Dataset

Finally, we evaluate the mapping precision of edgeSLAM in
KITTI Dataset. We calculate the Relative Translation Error
(RTE, another fundamental evaluation indicator in KITTI

Y
2 3 4
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Fig. 18. Impact of multi-user support on latency. Fig. 19. Impact of multi-user support on RPE.

dataset, means the average relative trajectory error among
the whole trace) of the constructed map compared with
ground truth. The experiment compared the optimized
global map stored in the edge server in edgeSLAM with
maps constructed by the other three systems. As shown in
Fig. 13, in all five image sequences, edgeSLAM outperforms
Edge-SLAM by more than 13% and ORB-SLAM by more
than 12%. As for Mask-SLAM, the offloading-all strategy
achieves the highest mapping precision, which is 0.5cm for
one-meter length traces with the powerful edge server. edge-
SLAM works on the computation-constrained mobile device
and enables real-time SLAM, rendering the 10% perfor-
mance gap with Mask-SLAM, demonstrating that edge-
SLAM achieves competitive performance.

In summary, real-time edgeSLAM achieves enhanced
localization accuracy and competitive mapping perfor-
mance with state-of-the-art online and offline frameworks.
The grateful performance comes from the efficient design of
the edge-assisted method and the adaption of the semantic
mask transfer strategy.

6.4 End-to-End Latency

Our system achieves an end-to-end latency within 33.3ms
inter-frame time at 30fps to ensure a smooth localization
and mapping experience. To validate this, we run edge-
SLAM under different network connections and calculate
the average end-to-end latency for each frame in Fig. 14.
The red dashed line in the figure is the 33.3ms deadline
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Fig. 20. Impact of multi-user support
on memory usage.

Fig. 21. Impact of multi-user
support on semantic mask
calculation count.

for 30fps SLAM devices. We can find that our system can
finish the entire task within 33.3ms under the majority of
wireless connection conditions (34.1ms under 4G wireless
connection with NRCC). Moreover, the average frame
latency increase merely < 4ms if NRCC is involved in
edgeSLAM, which is the bottleneck in most systems as
aforementioned.

Furthermore, we evaluate the robustness of edgeSLAM under
different network conditions. As shown in Fig. 15, edgeSLAM
can reach an average accuracy of 0.7cm, 0.9cm, and 1.3cm under
different wireless connections, respectively. The drift of accu-
racy influenced by network conditions is within 0.5cm.

6.5 Impact of Self Adaptation Strategy

To demonstrate the effectiveness of the designed self-adap-
tation strategy. We evaluate the average frame latency and
system localization accuracy with and without leveraging
the strategy. If the self-adaptation strategy is disabled, edge-
SLAM uploads each frame once the mobile client receives
the optimization result of the previous one. As shown in
Fig. 16, after bringing in the adaptation strategy, the average
frame latency decreases by more than 5ms, especially
>10ms under Celluar-4G wireless connection. The result
reflects that the designed self-adaptation strategy is vital in
ensuring edgeSLAM runs in real-time, especially under
unfavorable network conditions. Fig. 17 shows the perfor-
mance of edgeSLAM with and without adaptation strategy.
As seen, the average localization accuracies are 1.03cm and
0.93m, respectively. The precision difference is within 10%.
As mentioned in Section 4.4, the self-adaptation strategy
achieves real-time performance with an acceptable preci-
sion loss of 10%, the above results show that the leverage of
the self-adaptation strategy effectively decreases the end-to-
end latency while yielding similar accuracies.

6.6 Impact of Multi-User Support
To prove the effectiveness of the Multi-user Support module,
we perform extensive experiments on our system with and
without applying the module. Without the Multi-user Sup-
port module, the edge server computes every semantic
mask of the received keyframes and completely stores the
Keyframes. The experiments are conducted with the EuRoC
MAYV Machine Hall dataset [61], which contains 5 sequences
in the same area. Therefore, the maps can be fully merged.
In the multi-user case, the clients run different dataset
sequences simultaneously, respectively. In the single client
case, the client runs the dataset sequences sequentially, and
the latency and accuracies are averaged.

As shown in Fig. 18, after enabling this module, edge-
SLAM achieves real-time SLAM in all cases, and the average

Fig. 22. Pedestrian tracking
accuracy.
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Fig. 23. Robot navigation success
rate.

latency decreases by 10 more milliseconds, especially when
the client number reaches 5. It is worth noting that there are
some more operations in the multi-user module in the one-
client case, such as checking similarity and server semantic
mask transfer, which may bring about more processing
time. So the average latency is slightly larger when this
module is enabled. As suggested in Fig. 19, the RPE(Rela-
tive Pose Error) of edgeSLAM with multi-user support is
lower in most cases except the one-client case. As aforemen-
tioned, there are more procedures in the multi-user module
so that the error is a bit larger.

To better illustrate the memory consumption trends, the
dataset sequence input of the experiment with 5 clients is
sequential. The memory consumption is shown in Fig. 20. It
shows that when supporting 5 clients, edgeSLAM with Multi-
user Support module consumes 30% less memory. Moreover,
from 100s on, the memory consumption is becoming stable,
which means the area is fully explored and mapped.

We also evaluate the impact of the Server Semantic Trans-
fer Strategy. Semantic mask count refers to the number of
semantic masks that are calculated by the edge server. With
the help of the strategy, semantic mask can be transferred
on the server so that the computation resources are saved.
So the less the count is, the more effective the strategy is.
Fig. 21 indicates that the edgeSLAM with Multi-user Support
costs 30% less semantic mask calculation, which means the
strategy significantly decreases the computation resources
in the multi-user scenario.

In short, the Multi-user Support module is a crucial com-
ponent in the edgeSLAM. It leverages the maps’ spatial rela-
tionship, reuses the intermediate semantic masks, and
eliminates the system’s redundancy, thus extending its
workload.

6.7 Case Study
6.7.1 Pedestrian Localization and Tracking

We conducted experiments in a laboratory and 1st floor of a
shopping mall. These two areas have different floor layouts,
diverse wireless environments, and distinct user behavior
patterns. In particular, the crowded shopping mall is the
most dynamic. While there are a reasonable number of
users in the laboratory most of the time.

Setup. In this case, the client side of edgeSLAM is imple-
mented on an iOS platform (Apple iPhone X). The server
we use is a Lenovo IdeaPad-Y700 with i7-6700HQ CPU of
2.6GHz main frequency and 16G RAM, running the Ubuntu
16.04 operating system. For Mask R-CNN, the GPU we used
is TITAN V with CUDA version 9.1.85.

Ground Truth Acquisition. To obtain the ground truth,
which is the accurate location of pedestrians, we recruited a
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volunteer to watch surveillance videos, artificially differen-
tiate and track pedestrians, and manually mark their loca-
tions on the 2D indoor map.

Localization Result Analysis. Fig. 22 shows the perfor-
mance of edgeSLAM for pedestrian localization in different
areas. As seen, edgeSLAM yields an average accuracy of
7.6cm in the laboratory and 9.9cm in the shopping mall. The
corresponding 95th percentile location errors in these two
buildings are 9.9cm, 11.4cm, respectively. The result shows
that edgeSLAM can locate a pedestrian at fine-grained in
real-time (40fps in this case study), outperforming state-of-
the-art RF-based and vision-based localization systems.
Moreover, edgeSLAM yields similar performance (accuracy
difference < 20%) regardless of the environmental differ-
ence because of the semantic mask transfer strategy.

6.7.2 Robot Mapping and Navigation

We conducted extensive experiments in an office building, a
gymnasium and the 1st-3rd floors of a shopping mall,
whose sizes are about 400m?, 1,000m? and 4,000m?, respec-
tively. Overall, we design 17 navigation paths, including 4
short paths (< 100m), 6 medium paths (100m — 200m) and 7
long paths (> 200m), covering all the main pathways of the
testing areas.

Setup. In this test scenario, the client side of edgeSLAM is
a robot implemented with an Nvidia Jetson TX2. The edge
server is mentioned above.

Evaluation Metrics. Similar to some existing works like
Travi-Navi and Pair-Navi, we set checkpoints at turns, esca-
lators, and some landmarks on each trajectory. In total, we
set 274 checkpoints for the 21 navigation paths. Navigation
success rate is defined as the rate of successful arrival at each
checkpoint and departure from the checkpoint within a
radius of 2m is seemed as immediate tracking failure.

Navigation Performance. The performance of edgeSLAM
is depicted in Fig. 23. The average navigation success
rates (with NRCC) by edgeSLAM in the classroom build-
ing, gymnasium, and shopping mall are 97%, 94% and
90%, respectively.

Additionally, the wireless connections are different in
three areas. In the classroom building, the client is con-
nected to an edge server under Wi-Fi 5G link, while in the
gymnasium and shopping mall are Wi-Fi 2.4G and Cellular
4G, respectively. The average end-to-end latency for each
frame is also shown in Fig. 23. The result demonstrates that
in the classroom and gymnasium, edgeSLAM can run in
real-time (> 30fps) meanwhile about 25fps in the shopping
mall. The rationale behind that is the network suffers severe
fluctuation in crowded shopping malls.

7 CONCLUSION

In this work, we propose edgeSLAM, a semantic visual
SLAM system for mobile devices, achieving both accuracy
and real-time simultaneously in multi-user scenarios with
the help of edge computation resources. The core technol-
ogy of our design lies in: 1, the decomposition of computa-
tion modules of SLAM and semantic segmentation; 2,
avoidance of redundant computation by reuse the interme-
diate results on the server; 3, the adaption of system param-
eters to various conditions of network bandwidth and
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latency. 4, full use of the spatial relationship between clients
to eliminate the map redundancy and save the computa-
tional resources, expanding the system capacity. We fully
implement edgeSLAM and extensively evaluate the perfor-
mance on three datasets under different network condi-
tions. The results show that edgeSLAM achieves satisfying
results in all scenarios. Being truly real-time, edgeSLAM
sheds light on practical localization and mapping for mobile
users and robots.
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