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Abstract
Optical motion capture is a foundational technology driving ad-
vancements in cutting-edge fields such as virtual reality and film
production. However, system performance suffers severely under
large-scale marker occlusions common in real-world applications.
An in-depth analysis identifies two primary limitations of current
models: (i) the lack of training datasets accurately reflecting realistic
marker occlusion patterns, and (ii) the absence of training strate-
gies designed to capture long-range dependencies among markers.
To tackle these challenges, we introduce the CMU-Occlu dataset,
which incorporates ray tracing techniques to realistically simu-
late practical marker occlusion patterns. Furthermore, we propose
OpenMoCap, a novel motion-solving model designed specifically
for robust motion capture in environments with significant oc-
clusions. Leveraging a marker-joint chain inference mechanism,
OpenMoCap enables simultaneous optimization and construction
of deep constraints between markers and joints. Extensive com-
parative experiments demonstrate that OpenMoCap consistently
outperforms competing methods across diverse scenarios, while
the CMU-Occlu dataset opens the door for future studies in ro-
bust motion solving. The proposed OpenMoCap is integrated into
the MoSen MoCap system for practical deployment. The code is
released at: https://github.com/qianchen214/OpenMoCap.
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Figure 1: Marker occlusion. The marker placed on the back
is captured by two infrared cameras, enabling accurate lo-
calization via triangulation. Meanwhile, the marker on the
abdomen is occluded in either view.
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1 Introduction
Optical motion capture (MoCap) technology plays a critical role in
digitally recording and reconstructing human motion patterns with
high precision. This technology has become indispensable across
diverse fields such as film production, game development, and
embodied intelligence [5, 17, 30–32]. During the MoCap process,
multiple infrared cameras synchronously emit infrared light at
specific wavelengths (e.g., 850 nm) and capture reflected signals
from markers attached to the human body. These signals enable
precise positional reconstruction for markers through triangulation
methods [12]. The subsequent stage, known as MoCap data solving
[1, 15, 19, 26], involves deriving skeletal movements from noisy
marker point clouds, thus facilitating reliable motion analysis.

Deep learning-based approaches toMoCap data solving [6, 15, 19,
26, 27] are emerging as a focal point of research in this field. MoCap-
Solver [6] decomposes the task into three components—template
skeletons, marker layout, and motion, and jointly decodes their
latent representations. LocalMoCap [26] utilizes spatially and tem-
porally adjacent markers for mutual completion and designs graph
neural networks to reconstruct human skeletons. Building upon
LocalMoCap, RoMo [27] further reduces the complexity of motion
solving by decomposing joint rotations into directional components,
improving both efficiency and accuracy.

https://github.com/qianchen214/OpenMoCap
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746027.3754932
https://doi.org/10.1145/3746027.3754932
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Figure 2: Performance of MoCap in real occlusion scenario.
A MoCap actor performing a squatting action with arms
extended backward. Significant occlusions occur on markers
placed on the abdomen, chest, and forehead. OpenMoCap
provides a comparatively reliable solution.

Albeit inspiring, we observe significant performance degradation
when deploying state-of-the-art (SOTA) system [27] in real-world
production environments due to marker occlusion. Marker occlu-
sion in MoCap occurs when markers are blocked by body parts,
obstacles, or environmental structures, which prevents cameras
from capturing reflected infrared signals and determining the spa-
tial locations of markers. As illustrated in Fig.1, the markers on the
back of the body are visible, whereas those on the abdomen and
chest are occluded by the body. Existing method [27] fails to recon-
struct the human skeleton due to significant occlusions affecting
markers placed on regions like the chest as depicted in Fig.2.

Although existing methods exhibit impressive performance on
synthetic test sets, they struggle to achieve satisfactory results in
solving real MoCap data, like the SFU dataset [25] . A thorough
analysis of this issue has led us to the following two conclusions:

•Marker occlusions in real MoCap settings often exhibit
high variability and long durations. Existing datasets typically
use random marker occlusions for data augmentation to boost
model robustness. We have analyzed occlusion scenarios for mark-
ers in both synthetic dataset CMU [9] with random occlusions and
the real MoCap dataset SFU as shown in Fig.3. Markers are indexed
by their proximity relationships. The results reveal that occlusions
tend to exhibit certain patterns rather than occurring at random,
underscoring a significant mismatch between the occlusion modes
in existing synthetic datasets and those observed in real scenarios.
This discrepancy becomes problematic as model deployment heav-
ily relies on the assumption that training and testing datasets are
independently and identically distributed (i.i.d.). The divergence in
data distribution due to marker occlusions leads to a deterioration
in model performance, constraining its deployment in real-world
settings. This gap highlights the need for more realistic, large-scale
training datasets that better reflect real-world marker occlusion
patterns.

• Existing models lack mechanisms to effectively handle
the real characteristics of occlusions. To address the issue of
marker occlusion, recent initiatives, including LocalMoCap [26] and
RoMo [27], have introduced methods that utilize visible markers
to infer the positions of spatially adjacent occluded markers. How-
ever, their underlying assumption does not hold in practice. For
example, complex motions often lead to occlusions of multiple ad-
jacent markers simultaneously. This invalid assumption ultimately

(a) Marker Occlusion Probability.

(b) Marker Occlusion Duration.

Figure 3: Distribution comparison of marker occlusions in
the CMU and SFU MoCap datasets.

leads to degraded performance of methods in real-world occlusion
scenarios.

To overcome the limitations outlined above, this paper introduces
the CMU-Occlu dataset, which better reflects the distribution of
marker occlusions in the real world, along with OpenMoCap,
a motion solving model designed to address authentic occlusion
patterns. Specifically, our work has made targeted innovations in
two key dimensions:
• Training Dataset. We release the CMU-Occlu, a large-scale mo-
tion capture dataset that accurately conforms to the characteristics
of real marker occlusions. To mitigate the issue of distribution shift
between synthetic datasets and real-world data, this study intro-
duces ray tracing algorithms into the generation process of the
MoCap dataset for the first time. By simulating various spatial ar-
rangements of infrared cameras in a virtual environment, we have
modeled the occlusions caused by obstacles or body parts. This
approach significantly enhances the consistency between synthetic
data and actual occlusion patterns.
• Solving Mechanism. This paper proposes a marker-joint chain
inference mechanism aimed at accurately reconstructing the po-
sitions of both markers and joints. This mechanism incorporates
joints and occluded markers as learnable parameters, employing
bidirectional chain inference between markers and joints. With
the joints serving as intermediaries, this approach establishes long-
distance spatial constraints among markers. Furthermore, it enables
simultaneous optimization of marker and joint positions, where
progressively refined marker estimates contribute to the improved
accuracy of joint reconstruction.

To validate the effectiveness of the proposed work, we conducted
extensive experiments on both the synthetic MoCap dataset CMU-
Occlu and the real MoCap dataset SFU. The experiments demon-
strate that CMU-Occlu provides a consistent performance improve-
ment for existing methods [26, 27], compared to the CMU dataset.
Additionally, OpenMoCap surpasses SOTA method, with joint po-
sition and joint rotation errors reduced by more than 27%.
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In summary, this paper makes following contributions.

• For the first time, a systematic analysis of marker occlusion
patterns in real MoCap scenarios is conducted, revealing
two fundamental reasons underlying the performance bottle-
necks of current SOTAmethods: (𝑖) Inconsistencies between
the occlusion data distributions in the training sets and the
real-world test sets; (𝑖𝑖) The inability of models to effectively
establish long-distance spatial constraints.

• We introduce the CMU-Occlu dataset, which incorporates
realistic marker occlusion patterns and overcomes the limita-
tions of existing optical MoCap datasets with overly simplis-
tic and unrealistic occlusion assumptions. This dataset can
serve as a benchmark for evaluation in the field of optical
motion capture solving.

• We propose a robust MoCap solving model, OpenMoCap,
which innovatively implements a marker-joint chain infer-
ence mechanism to enhance reconstruction capabilities in
scenarios with marker occlusions. Extensive experiments
demonstrate that the proposed method surpasses prior state-
of-the-art techniques.

• Based on the OpenMoCap algorithm, we develop a low-cost
MoCap system, MoSen, which eliminates the need for labor-
intensive post-processing commonly required in mainstream
commercial solutions (e.g., OptiTrack, VICON). By funda-
mentally transforming the workflow of MoCap repair spe-
cialists, our system significantly reduces the overall cost of
MoCap and paves the way for its broader adoption.

2 Related Work
2.1 Motion Data Synthesis
The CMU Motion Capture (MoCap) dataset [9] is a widely used
benchmark in human motion analysis, offering over 2000 high-
quality sequences captured via a Vicon system, covering diverse ac-
tions like walking, jumping, and dancing. It has served as a founda-
tion for developing and evaluating data-driven MoCap algorithms.
SMPL [18] enables accurate motion reconstruction by parameteriz-
ing body shape and pose. AMASS [9, 20, 23, 24] unifies data from
multiple MoCap datasets and refines surface representations to
provide high-quality motion data.

To improve model robustness, synthetic datasets often apply
frame-wise random occlusion [6, 14] or long-term occlusion of a
single marker [26]. In real-world settings, however, occlusions are
typically sustained and affect multiple neighboring markers, cre-
ating a distribution gap that limits model applicability in practical
MoCap scenarios.

2.2 Motion Capture Solving
Recently, MoCap has become a research hotspot. UUO-Mocap [21]
tackles motion capture in unstructured, unlabeled video settings
by leveraging body priors and handling partial-body observations.
SportsCap [7] addresses challenging sports scenarios with a frame-
work that jointly captures 3Dmotion and fine-grained actions using
structured priors and a multi-stream spatio-temporal GCN.

Optical motion capture, the most precise and widely adopted
method, estimates body pose from marker trajectories. Traditional

marker-based solving methods [1, 2, 10, 16] rely on geometric con-
straints and optimization algorithms under specific assumptions.
Recently, deep learning has driven advances in marker tracking and
data reconstruction. MoSh++ [19] estimates body pose via frame-
wise parameter optimization. MoCap-Solver [6] encodes skeletal
structure, marker layout, and motion separately, then jointly de-
codes them. LocalMoCap [26] exploits local marker dependencies,
completing occluded positions from neighbors and applying GCNs
for motion inference. Damo [15] improves generalization across
marker layouts, while RoMo [27] addresses marker mislabeling and
positional noise. Although data-driven methods are more robust,
most are not explicitly designed for real-world occlusion, leading
to performance degradation when assumptions about clean inputs
are violated.

In other fields [3, 8], methods like MAE [13] enhance learning
by masking parts of the input and training on the visible data.
OpenMoCap adopts this idea to recover occluded information.

3 CMU-Occlu Dataset Synthesis
Marker occlusion is inevitable in optical motion capture. Existing
synthetic datasets rely solely on random occlusion methods for
data augmentation. However, this approach does not accurately
reflect occlusion patterns observed in real-world motion capture
scenarios, thus limiting the effectiveness and efficiency of current
pre-trained models when deployed in production environments.

3.1 Preliminary: Marker Capture
Here, we briefly describe the working principle of optical motion
capture systems. In such systems, calculating the three-dimensional
coordinates of markers relies on satisfying a co-visibility constraint:
spatial position of one marker can be reconstructed using epipolar
geometry [11] only if it is simultaneously captured by at least two
infrared cameras. As illustrated in Fig.1, two stationary infrared
cameras are positioned at the top, and the blue spheres attached
to the body represent markers. In this example, when the subject
performs a forward-bending movement:
• Visible Marker: The marker on the back remains visible to both
cameras, satisfying the co-visibility condition, allowing its accurate
3D coordinates to be calculated through triangulation.
• Occluded Marker: Markers on the abdomen and chest become
obscured by body, resulting in fewer than two cameras capturing
their reflected signals. Consequently, the system cannot form valid
observation equations for their reconstruction, and these markers
are classified as occluded.

Considering the working principles of MoCap systems, marker
occlusion depends on various factors, including the number of cam-
eras, their spatial arrangement, and the complexity of movements
performed. Consequently, the resulting occlusion patterns often
involve extensive occlusions and prolonged occlusion periods for
individual markers.

3.2 Dataset Construction
To incorporate realistic marker occlusion patterns into optical
motion capture datasets, we propose an improved version of the
original CMU dataset [9], termed CMU-Occlu. This dataset lever-
ages a parallel implementation of the Möller–Trumbore algorithm
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(a) CMU Dataset. (b) CMU-Occlu Dataset.

Figure 4: Comparison of marker occlusion patterns of differ-
ent datasets.

(a) Marker Occlusion Ratio. (b) Marker Occlusion Duration.

Figure 5: Comparison of marker occlusion distribution char-
acteristics across datasets.

[22], integrating real MoCap scenario configurations. As a result,
CMU-Occlu effectively bridges the gap between existing synthetic
datasets and real-world occlusion patterns.

Specifically, an infrared ray is defined by its origin r0 and direc-
tion vector d:

R(𝑡) = r0 + 𝑡d. (1)
At the same time, the triangular mesh of the human body is defined
by its vertices v1, v2, v3, and the marker p located on amesh triangle
can be expressed as:

p = (1 − 𝛽 − 𝛾)v1 + 𝛽v2 + 𝛾v3 . (2)

To determine whether the human body occludes the infrared ray
from capturing a marker, it is necessary to check whether the mesh
intersects with the ray, and whether the intersection point lies
closer to the camera than the marker itself.

r0 + 𝑡d = (1 − 𝛽 − 𝛾)v1 + 𝛽v2 + 𝛾v3, (3)

is_occluded = (𝑡closest < ∥p − r0∥), (4)
where 𝑡closest is the value of 𝑡 for the nearest valid intersection
point.

Through this approach, we incorporate simulated marker oc-
clusion into the CMU-Occlu dataset. As illustrated in Fig.4, the
corresponding frames of markers from both the CMU dataset and
the CMU-Occlu dataset are visualized.

To facilitate training more robust models, the proposed CMU-
Occlu dataset encompasses both random and simulated occlusion
patterns. Specifically, the simulated occlusion patterns are gen-
erated by selecting four cameras through comparing the Kull-
back–Leibler (KL) divergence of occlusion distributions with the

real-world SFU dataset. Additionally, the four camera layouts with
the highest divergence are chosen, and oversampling [4] is em-
ployed to address the imbalance problem arising from an insuffi-
cient number of occluded MoCap frames.

As shown in Fig.5, we conduct a comparative analysis of marker
occlusion distributions across the CMU, CMU-Occlu, and the real-
world MoCap dataset SFU [25]. The comparison encompasses both
the occlusion probability of individual markers and the duration of
occlusion for each marker. Results show that the occlusion distribu-
tion of CMU-Occlu aligns more closely with that of SFU, whereas
CMU exhibits a distinctly different pattern.

To ensure versatility and ease of use across various research
and production environments, we will publicly release our dataset
generation method as open-source, along with interfaces support-
ing different parameter configurations to accommodate diverse
application scenarios.

4 Architecture
Given a captured point cloud of visible markers in a single frame,
our goal is to accurately estimate joint positions and rotations,
while simultaneously reconstructing the positions of markers that
may be occluded or displaced. To address this challenge, we propose
a multi-stage framework that decouples position estimation from
rotation estimation.

4.1 Decoupled MoCap Architecture
Different joints play distinct roles in human motion, with waist-
region joints (e.g., pelvis) being critical for determining global pose.
To ensure accurate modeling, most methods assume partial visibil-
ity of key markers. For instance, to aid model convergence, training
data is typically aligned to a standard pose using eight waist mark-
ers. This alignment introduces two key limitations:
• Occlusion Sensitivity. Alignment methods such as Singular
Value Decomposition (SVD) require at least three pairs of corre-
sponding visible points between two point clouds. Consequently,
if one of key markers remain continuously occluded, models like
MoCap-Solver[6] cannot function properly.
• Irreversible Error Propagation. Directly performing spatial
alignment using partially missing critical markers [26, 27] intro-
duces alignment errors at the preprocessing stage. These initial
errors propagate iteratively through the global skeletal model, ulti-
mately causing substantial distortions in the reconstructed motion.

To address critical data loss caused by marker occlusions, we
propose a decoupled MoCap solving architecture that postpones
the spatial alignment process. This architectural design stems from
a fundamental insight: solving for joint and marker positions con-
stitutes a linear problem that does not heavily depend on spatial
alignment outcomes. Conversely, joint rotation estimation is inher-
ently more challenging, characterized as a nonlinear problem that
benefits significantly from spatial alignment to facilitate training
convergence.

Following this design principle, the overall architecture of our
approach, OpenMoCap, is illustrated in Fig.6. The architecture con-
sists of two primary components: a Position Solver and a Rotation
Solver. The Position Solver takes the raw marker positions as in-
put to compute joint positions. It also reconstructs positions of
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Figure 6: Overview of the proposed multi-stage framework, OpenMoCap. The framework takes raw markers with occlusions
as input. A Position Solver first estimates the positions of all markers and joints through the Marker-Joint Chain Inference
Mechanism. These positions are then used to align the input for a Rotation Solver, which predicts joint rotations using a
stacked attention-based architecture.

all markers, filling in occluded markers and correcting positions
of displaced markers. Subsequently, critical reference markers are
spatially aligned with their corresponding markers in a T-pose con-
figuration to perform a transformation. The whole aligned markers
are then used in the Rotation Solver, which computes the joint
rotations of the human body.

4.1.1 Position Solver. To handle varying levels of marker occlusion,
we represent occludedmarkers as shared learnable parameters. This
allows the network to learn their feature distributions, avoiding
distortion from fixed placeholders like zeros. Convolutional and
attention modules extract features from visible markers, which are
then propagated to occluded ones.

Joint position solving is formulated as a generative task, where
the input includes extracted features and 𝑁 shared parameters that
guide the generation of joint representations. The decoder, based on
the Marker–Joint Chain Inference Mechanism, computes attention
distributions. The loss function for position prediction is defined as
follows:

𝐿𝑃 = 𝜆1𝐿𝑀𝑜𝑐𝑐
+ 𝜆2𝐿𝑀𝑠ℎ𝑖 𝑓 𝑡

+ 𝜆3𝐿𝐽 . (5)

Since the number of occluded markers is relatively small com-
pared to the total number of markers, we emphasize the importance
of marker prediction by separating the marker completions and
marker refinements into two distinct losses. 𝐿𝑀𝑜𝑐𝑐

represents the
error in solving the positions of the occluded markers. 𝐿𝑀𝑠ℎ𝑖 𝑓 𝑡

rep-
resents the error in correcting the positions of the shifted markers,
and 𝐿𝐽 represents the error in solving the positions of the human
joints. All three errors are computed using Euclidean distance. The
parameters 𝜆1, 𝜆2 and 𝜆3 will be discussed in the experimental
section.
4.1.2 Rotation Solver. After processing through the Position Solver,
we obtain accurate joint and marker positions. Leveraging this
precise and detailed input, we construct the Rotation Solver to
estimate joint rotations.

As noted earlier, the positions of key reference markers are
used to eliminate global transformations. Considering the forward
kinematics of the human body, joint rotations can be inferred by
fitting the skeletal model to the observedmarker, indicating a strong
correlation betweenmarker locations and joint rotations. To capture
this relationship, the rotation solver incorporates stacked attention
modules.

In terms of loss function design, instead of using hierarchical
weighting, we compute rotation errors for each joint independently.
This design offers two key advantages: (i) it ensures equal weight-
ing of rotation loss across all joints, thereby preventing error accu-
mulation and propagation; (ii) hierarchical schemes impose fixed
parent–child dependencies in joint rotations. We relax these con-
straints to allow more flexible motion modeling.

Finally, to ensure continuity during rotation regression training,
we adopt the 6D representation [33] for computing rotation errors.
Notably, the network operates without relying on temporal corre-
lations, reducing preprocessing overhead and enabling real-time
motion MoCap with deep learning.

4.2 Marker-Joint Chain Inference Mechanism
In real-world motion capture environments, occlusion of a marker
by the body or external obstacles often leads to the simultaneous
occlusion of neighboring markers. To address the challenges posed
by such occlusion patterns, we conduct an in-depth investigation
into the relationship between markers and joints, and accordingly
design a marker-joint chain inference mechanism. This mechanism
is driven by the key insight that markers and joints are mutually
constrained.

Bidirectional Inference represents the mutual relationship be-
tween the positions of markers and joints. Joint features extracted
from imperfect marker positions help integrate contextual infor-
mation, thereby contributing to more accurate marker position
refinement.
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Figure 7: Marker-Joint Chain Inference Mechanism. The fig-
ure highlights a marker on the front of the foot (indicated by
a star) and visualizes attention weights across other markers
and joints, with red intensity indicating attention strength.
Long-range dependencies are captured through bidirectional
marker–joint reasoning and joint chain inference.

This insight is validated in our experiments. As illustrated in
Fig.7, the red color gradient indicates the weights from one atten-
tion layer, with lighter shades corresponding to lower attention
values. The yellow pentagon marks the target marker of interest.
When estimating its position, the model relies not only on infor-
mation from other markers but also on that from the joints. By
learning the bidirectional correlations between markers and joints,
the network iteratively integrates information from both sources,
enabling mutual refinement and unified optimization of the final
result.

Chain of Inference represents the formation of information
pathways. As shown in Fig.7, a marker exhibits limited dependency
on distant markers. This sheds light on the limitations of previous
approaches that focus exclusively on mutual completion among
markers, as they fail to effectively leverage all available information
for accurate completion. The marker on the right toe is closely
associated with the corresponding toe joint and even establishes
a connection to the left hip joint through inter-joint relationships.
When the foot markers are heavily occluded, the markers near the
hip can help constrain the possible positions of the foot markers
by predicting joint positions and performing chain-like reasoning.
As a result, long-range dependencies are successfully established.

Previous methods typically infer joint positions and rotations
from initially corrected marker positions. In contrast, the Marker-
joint chain inference mechanism introduces a key distinction: it
treats joints as intermediate nodes to establish long-range depen-
dencies among markers. Specifically, marker information can be
propagated through the close connections between nearby joints
and other related joints. Since joint positions are tightly coupled
with marker positions, they can in turn help refine or complete miss-
ing or distant marker observations. This simultaneous optimization
of markers and joints leads to more accurate reconstruction results.
In particular, precise and complete estimation of markers around
the waist is crucial for subsequent spatial alignment procedures.

We formalize the modeling process as follows. The entire mech-
anism can be interpreted as an information diffusion process over

a weighted directed graph. Specifically, let𝑀 denote the set of all
markers, 𝐽 the set of joints to be predicted, and 𝑉 the complete set
of nodes, where:

𝑀 = {𝑚1, ...,𝑚𝑀 } , 𝐽 =
{
𝑗1, ..., 𝑗 𝐽

}
,𝑉 = 𝑀 ∪ 𝐽 . (6)

We define the initial state of the directed graph as ℎ (0) , and the
weighted propagation matrix at step 𝑡 as 𝑃 (𝑡 ) . Accordingly, the
representation of the 𝑘-th marker after 𝐿 steps can be expressed as:

ℎ
(𝐿)
𝑘

=

𝑀+𝐽∑︁
𝑣=1

[
𝑃 (𝐿−1)𝑃 (𝐿−2) · · · 𝑃 (0)

]
𝑘,𝑣

ℎ
(0)
𝑣 . (7)

Similarly, the state of the 𝑘-th joint after 𝐿 steps can be computed
as:

ℎ
(𝐿)
𝑀+𝑘 =

𝑀+𝐽∑︁
𝑣=1

[
𝑃 (𝐿−1)𝑃 (𝐿−2) · · · 𝑃 (0)

]
𝑀+𝑘,𝑣

ℎ
(0)
𝑣 . (8)

As shown in Fig.7, the chain reasoning between different joint
positions across multiple steps can thus be expressed as:

[𝑃 (𝑠 )𝑃 (𝑠−1) ] 𝑗𝑐 , 𝑗𝑎 =
∑︁
𝑗𝑏

𝑃
(𝑠 )
𝑗𝑐 , 𝑗𝑏

𝑃
(𝑠−1)
𝑗𝑏 , 𝑗𝑎

. (9)

5 Experiments
5.1 Experimental Details
5.1.1 Parameter Settings and Training Environment. In our experi-
ment, the input markers are centralized by subtracting the centroid
position. The occluded markers and input joints are set to different
shared parameters respectively.

As for the weight of loss in position solving network, we use

𝐿𝑃 = 𝐿𝑀𝑜𝑐𝑐
+ 𝐿𝑀𝑠ℎ𝑖 𝑓 𝑡

+ 2 ∗ 𝐿𝐽 . (10)

Since accurate positions of markers are very important for the
operation of rotation network, the position solving loss of marker
is set to the same weight as the joint position.

The whole network is trained on 1 GeForce RTX 4090 with 24GB
memory, and the batch size is set to 256.

5.1.2 Dataset. A dataset of superior quality, encompassing a wide
variety of motion types and body sizes, is crucial for enhancing the
generalization capabilities of models. Three datasets are used in our
experiments. In addition, we collected a set of real-world MoCap
sequences to qualitatively evaluate and compare the performance
of different approaches.

The first dataset is generated by driving the SMPL model using
pose parameters from the CMU MoCap dataset [9] and shape pa-
rameters from the CAESAR dataset [28]. We refer to this dataset as
the CMU dataset. We apply the corruption function proposed by
Holden [14]. The dataset consists of 5k synthetic MoCap sequences,
totaling 8m frames, with 1,700 characters and 5,100 marker con-
figurations. As described in Sec.3, the second dataset we use is
the CMU-Occlu Dataset. The third dataset is SFU Motion Capture
Database [25]. This real MoCap dataset includes motion capture
recordings from 8 actors, with a total of 44 manually annotated
sequences.
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MoSh++ MoCap-
Solver

Local
MoCap RoMo Open

MoCap

CMU
JPE (cm) 2.58 2.56 0.94 0.89 0.41
JOE (◦) 9.40 6.51 3.59 3.43 2.52

CMU-
Occlu

JPE (cm) 2.72 2.95 1.23 1.16 0.46
JOE (◦) 9.68 6.83 3.80 3.54 2.60

Table 1: Comparison with other methods on different
datasets.

(a) Joint Position Error (JPE). (b) Joint Rotation Error (JRE).

Figure 8: Error variation of different methods under varying
marker occlusion ratios.

5.1.3 Evaluation Metrics. Given the positions of markers as input,
the model outputs the positions and rotations of joints. In the fol-
lowing experiments, we use Joint Position Error (JPE) to represent
the Euclidean distance between the predicted results and ground
truth (GT). We also use Joint Orientation Error (JOE) to measure
the discrepancy between the predicted and actual joint rotation
angles.

5.2 Approach Comparisons
Each method is independently trained and tested on the CMU and
CMU-Occlu datasets, respectively. Both datasets contain marker
occlusions and positional perturbations. As shown in Tab.1, the
increased level of occlusion in CMU-Occlu leads to a slight perfor-
mance degradation across all methods.

MoSh++ [19], as a parameter optimization method, relies heavily
on temporal continuity and struggles with frame-wise corrupted
data. MoCap-Solver [6] depends on consistently visible key mark-
ers, limiting its robustness in real-world settings. LocalMoCap [26]
and its successor RoMo [27] address occlusions by interpolating
missing markers and predicting their positions using neural net-
works. This approach achieves favorable results on the CMU dataset
with randomly simulated occlusions, where occlusion durations are
short and adjacent markers can compensate for each other. Among
these methods, OpenMoCap achieves the best performance on both
the CMU and CMU-Occlu datasets.

To further evaluate the robustness of different methods under
varying levels of occlusion, we divide the CMU-Occlu test set into
four subsets based on occlusion severity: 5%, 10%, 15%, and 20%.
For a given sequence, if more than half of its frames contain over
20% of occluded markers, it is assigned to the 20% occlusion group.
Models trained on the CMU-Occlu dataset are then tested under
each occlusion condition, and the results are shown in Fig.8.

w/o marker-
joint chain

w/o decoupled
architecture

Open
MoCap

CMU
JPE (cm) 0.75 0.61 0.41
JOE (◦) 3.34 3.16 2.52

CMU-
Occlu

JPE (cm) 0.87 1.09 0.46
JOE (◦) 3.55 5.13 2.60

Table 2: Ablation studies of our method.

MoCap-
Solver

Local
MoCap RoMo Open

MoCap

CMU
JPE (cm) 5.50 1.93 1.46 0.40
JOE (◦) 10.03 4.86 4.78 4.47

CMU-
Occlu

JPE (cm) 5.73 1.41 1.38 0.39
JOE (◦) 10.21 4.25 4.22 4.10

Table 3: Comparison of methods trained on CMU and CMU-
Occlu datasets, with evaluation conducted on SFU.

As occlusion increases, all methods show rising error. MoSh++
struggles with intra-sequence marker shifts, leading to high overall
error. LocalMoCap and RoMo perform well under low occlusion
but degrade sharply on the CMU-Occlu dataset due to their lim-
ited recovery strategies. In contrast, OpenMoCap models occluded
markers as learnable parameters and employs a marker–joint chain
inference mechanism to capture long-range dependencies, main-
taining strong performance under realistic, high-occlusion condi-
tions.

Fig. 9 shows visualization results. When key markers are missing,
MoCap-Solver fails to align accurately, leading to large discrepan-
cies from the ground truth. In contrast, OpenMoCap achieves more
accurate reconstructions under severe occlusions. For example, in
the bottom-right yoga pose with occluded abdominal and chest
markers, it produces the closest reconstruction to the ground truth.

5.3 Ablation Studies
To evaluate component effectiveness, we conducted two ablation
studies. In the first, we removed the marker–joint chain and di-
rectly estimated joint positions from visible markers, predicting
occluded ones afterward. As discussed in Sec.4.2, this weakens
spatial reasoning and leads to inaccurate marker recovery, which
further degrades rotation estimation. As shown in Tab.2, both joint
position and rotation errors increase under this setting.

In the second experiment, we merged the position solver and
rotation solver into a single network while proportionally increas-
ing its depth. In the CMU-Occlu test set, certain sequences contain
fewer than three visible key markers after occlusion. While the
method performs satisfactorily on the CMU dataset, it requires
the alignment process to be performed during data preprocessing,
which can result in a notable degradation in performance on the
CMU-Occlu dataset.
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GTMoCap-Solver LocalMoCap RoMoGTMoCap-Solver LocalMoCap RoMoGTMoCap-Solver LocalMoCap RoMo

GTOpenMoCapMoCap-Solver LocalMoCap RoMoGTMoCap-Solver LocalMoCap RoMoGTMoCap-Solver LocalMoCap RoMo

OpenMoCapOpenMoCap

OpenMoCapOpenMoCap

OpenMoCap

CMU-Occlu Test set

SFU dataset

Figure 9: Qualitative evaluation of different models on CMU-Occlu test set and SFU dataset.

RoMo

OpenMoCap

Raw Markers

Figure 10: Qualitative evaluation of different models on real
MoCap of a Russian twist.

Mocap-Solver LocalMoCap RoMo OpenMoCap

JPE (cm) 7.68 4.92 4.73 1.01
JOE (◦) 28.83 16.73 15.98 12.68

Table 4: Comparison of different models on the processed
MOYO dataset.

5.4 Dataset Analysis
To evaluate the effectiveness of the dataset in supporting real-world
deployment of pre-trained models, we train each method separately
on the CMU and CMU-Occlu datasets and test them on the real-
world MoCap dataset SFU.

In the CMU dataset, complex motions often involve realistic
occlusions around the waist and abdomen. As shown in Tab. 3,
models like MoCap-Solver, which rely on marker visibility, struggle
under such conditions, as misaligned inputs degrade training. In

contrast, models with inherent occlusion robustness benefit from
training on CMU-Occlu and perform better in real-world scenarios.

5.5 Application
We conducted the real-world experiment using MoSen MoCap
system and tested the performance of different models. The actor
performed a Russian twist, which involves four stages: sitting down,
raising the legs, lifting the arms, and twisting the torso. As shown
in Fig.10, the raw markers represent the captured visible markers.
Significant occlusions occurred in the abdomen, leg, and hip regions.
We compared the inference results of the SOTA method and Open-
MoCap. In contrast to RoMo, OpenMoCap robustly reconstructed
the motion and successfully completed the solving process.

5.6 Generalization Study
To further explore the generalization ability of OpenMoCap, we
processed the MOYO dataset [29], which contains diverse and chal-
lenging yoga poses and strong self-occlusion, fine-tuned the models
on this new domain and report the performance in Tab.4. The re-
sults indicate that OpenMoCap achieves a significant performance
advantage compared to existing approaches.

6 Conclusion
In this paper, we conduct an in-depth analysis of two key factors
that lead to performance degradation when deploying existing mod-
els in real-world MoCap environments, and propose targeted solu-
tions for each. First, we introduce the CMU-Occlu dataset, which
incorporates more realistic marker occlusion patterns, thereby im-
proving the distributional alignment between synthetic training
data and real-world test scenarios. Second, we propose the Open-
MoCap solver, which establishes strong long-range dependencies
between markers through a marker-joint inference mechanism. Ex-
perimental results demonstrate that CMU-Occlu enhances model
generalization, while OpenMoCap achieves robust motion solving
under diverse occlusion conditions, surpassing SOTA performance.
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