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Abstract

Grounding natural language instructions to visual observations is
fundamental for embodied agents operating in open-world envi-
ronments. Recent advances in visual-language mapping have en-
abled generalizable semantic representations by leveraging vision-
language models (VLMs). However, these methods often fall short
in aligning free-form language commands with specific scene in-
stances, due to limitations in both instance-level semantic con-
sistency and instruction interpretation. We present OpenMap, a
zero-shot open-vocabulary visual-language map designed for accu-
rate instruction grounding in navigation tasks. To address semantic
inconsistencies across views, we introduce a Structural-Semantic
Consensus constraint that jointly considers global geometric struc-
ture and vision-language similarity to guide robust 3D instance-
level aggregation. To improve instruction interpretation, we pro-
pose an LLM-assisted Instruction-to-Instance Grounding module that
enables fine-grained instance selection by incorporating spatial con-
text and expressive target descriptions. We evaluate OpenMap on
ScanNet200 and Matterport3D, covering both semantic mapping
and instruction-to-target retrieval tasks. Experimental results show
that OpenMap outperforms state-of-the-art baselines in zero-shot
settings, demonstrating the effectiveness of our method in bridging
free-form language and 3D perception for embodied navigation.
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1 Introduction

As the field of embodied intelligence continues to evolve, enabling
agents to navigate using natural language instructions has emerged
as a core challenge [4]. In Vision-and-Language Navigation (VLN),
agents are expected to interpret language commands and perform
goal-directed planning based on visual observations in complex 3D
environments [26, 40]. To support this process, semantic maps are
essential, as they enhance perceptual understanding and enable pre-
cise, instruction-driven navigation [34, 37]. Recent advances have
further incorporated semantic features from VLMs [13, 29] into
3D scene representations, giving rise to open-vocabulary visual-
language maps [7, 9, 38] that generalize well across a wide range
of navigation tasks. However, effectively grounding natural lan-
guage instructions to specific 3D instances within these maps—i.e.,
instruction grounding—remains an open challenge.

Existing open-vocabulary visual-language maps typically follow
a two-stage pipeline: (1) Semantic mapping: As agents navigate
the environment, they collect visual observations and use VLMs
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(a) Instance-level semantic mapping.
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(b) Grounding generic navigation instructions to target instances.

Figure 1: OpenMap constructs an open-vocabulary visual-language map. (a) OpenMap performs fine-grained, instance-level semantic
mapping on navigation scenes from Matterport3D [43]. (b) Three types of navigation instructions are shown from left to right: object-goal,
demand-driven, and language-guided. OpenMap accurately grounds generic instructions to the intended targets, where darker regions in the
heatmaps indicate stronger alignment between the instruction and the predicted instance.

to extract open-vocabulary features at the pixel level. These fea-
tures are back-projected into 3D and aggregated across views to
construct the semantic map. (2) Instruction grounding: Given
a free-form instruction, large language models (LLMs) generate
descriptive target expressions, which are then grounded to the map
by matching them against visual-language features.

While promising, these approaches still face significant limi-

tations. In many cases, the alignment between natural language
instructions and map instances underperforms even basic text-to-
image matching capabilities of VLMs. Two core challenges remain:
¢ In semantic mapping, existing methods often rely on spatial or
structural constraints to merge observations from different view-
points. Some cluster point clouds by proximity or predefined grids
[2, 9], which may lead to over- or under-segmentation. More ad-
vanced techniques leverage structural overlaps [38, 44], but incom-
plete point clouds and object occlusion can still cause erroneous
merges between semantically distinct instances.
o In instruction grounding, despite operating on open-vocabulary
features, most methods remain tied to predefined object lexicons.
Some rely on static category labels [7, 38], while others restrict LLM
outputs to a fixed set of terms [9, 10]. These constraints hinder the
expressive capacity of LLMs and limit their ability to capture fine-
grained, contextualized object references. For example, given the
instruction "Get the chair ready—I want to eat", identifying the chair
near the dining table, rather than a generic chair, is non-trivial.

In summary, existing visual-language maps—across both se-
mantic mapping and instruction grounding—largely follow closed-
vocabulary paradigms, limiting the potential of VLMs and LLMs
in open-world navigation. On one hand, they fail to fully exploit
structural and semantic cues for robust instance association; on
the other, they underutilize the generative flexibility of LLMs in
grounding diverse instructions.

Our Work. We introduce OpenMap, a zero-shot Open vo-
cabulary visual-language Map designed for accurate instruction
grounding in embodied navigation. OpenMap addresses the above
challenges by aligning natural language instructions with 3D in-
stances through a unified visual-language representation. Specifi-
cally, we propose a structural-semantic consensus constraint that
leverages both geometric and semantic consistency to drive robust
instance merging during mapping (Fig. 1a). Furthermore, we in-
troduce an instruction-to-instance grounding module that allows

LLMs to generate fine-grained target descriptions and reason over
spatial context for precise grounding (Fig. 1b). OpenMap offers key
advantages in two core aspects:

e We propose a structural-semantic consensus mapping strategy
(§3.2) to resolve feature inconsistencies commonly introduced dur-
ing the aggregation stage of existing mapping methods. Our ap-
proach incrementally constructs a 3D instance-level semantic map
from 2D masks, using structural and semantic consensus as joint
criteria for observation fusion. Specifically, two masks are merged
only when supported by both global structural and semantic con-
sistency—that is, they are mutually observable from other view-
points (i.e., exhibit containment relationships in the point cloud)
and closely aligned in the vision-language feature space (i.e., refer
to the same object or its constituent parts). Guided by these con-
sensus cues, OpenMap iteratively aggregates 2D instances across
views, effectively extending 2D vision-language alignment to 3D
instance-level representations.

e We introduce a OpenMap-enhanced Instruction-to-Instance ground-
ing module (§3.3). Unlike prior approaches that constrain LLM out-
puts using a predefined scene instance lexicon when interpreting
navigation instructions [9, 22, 38], OpenMap enables more pre-
cise grounding of natural language to scene instances. This allows
large language models to generate fine-grained instance descrip-
tions—for example, interpreting “I am thirsty” as “a cup filled with
water” rather than simply “cup.” Furthermore, OpenMap incorpo-
rates spatial context to support reasoning over candidate instances;
for instance, given the instruction “Get the chair ready—I want to
eat, it can identify the intended chair by considering nearby objects
such as a dining table. The synergy between LLMs and OpenMap
enables accurate indexing from high-level navigation instructions
to specific map instances.

We evaluate OpenMap on the public benchmark ScanNet200
[30], focusing on instance segmentation precision and semantic
accuracy. To further assess its target retrieval capabilities in nav-
igation scenarios, we conduct experiments on the Matterport3D
dataset [43] using a variety of instruction types, including object-
goal [33], demand-driven [36], and language-guided instructions
[14]. Compared to state-of-the-art (SOTA) methods, OpenMap con-
sistently outperforms them in both zero-shot semantic mapping
and instruction-to-target grounding.

Our contributions are summarized as follows:
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Figure 2: OpenMap Overview. OpenMap takes RGB-D inputs from multiple viewpoints and applies pretrained models to predict 2D
masks and extract open-vocabulary features. During semantic mapping (§3.2), it iteratively aggregates 2D masks into 3D instances using
a structural-semantic consensus constraint. During instruction grounding (§3.3), an LLM selects the target instance by reasoning over

candidate proposals and scene context provided by OpenMap.

o We develop OpenMap, an open-vocabulary visual-language map-
ping framework that bridges LLM-based instruction parsing and 3D
instance grounding, enabling precise instruction grounding from
free-form navigation commands.

o We propose a novel structural-semantic consensus constraint that
jointly leverages global geometric consistency and vision-language
semantics to enable fine-grained 3D instance-level mapping.

o We evaluate OpenMap on ScanNet200 and Matterport3D, cover-
ing both semantic mapping and target retrieval tasks, and show
consistent improvements over existing methods. Our code is publicly
available at https://github.com/openmap-project/OpenMap.

2 Related Work

Vision-Language Foundation Models. Large-scale VLMs, such
as CLIP [29] and BLIP [19], align visual and textual modalities
within a shared embedding space [47]. These advances have facil-
itated open-vocabulary understanding [39] across tasks such as
classification and retrieval. Recent efforts extend these capabilities
to 2D segmentation, with models like OVSeg [20] and OVSAM [45]
incorporating segmentation heads to support instance-level open-
vocabulary queries [48]. However, transferring this alignment into
3D space remains challenging due to sparse and incomplete data,
especially in navigation settings where environments are incremen-
tally explored [3, 11].

Open-Vocabulary 3D Instance Mapping. Among various forms
of open-vocabulary 3D semantic mapping, instance-level mapping
is particularly challenging yet essential for accurate instruction
grounding. Recent methods for open-vocabulary 3D instance seg-
mentation [15, 25] follow two main paradigms. The first, 3D-to-2D
[12, 27, 34], performs segmentation in 3D and projects results to
2D for feature extraction, but often suffers from poor completeness
and semantic consistency due to sparse point clouds. The second,
2D-to0-3D [7, 24, 44], segments 2D frames, uses depth maps for 3D
back-projection, and aggregates instance masks via geometric over-
lap or spatial clustering. While effective, these methods typically
overlook semantic similarity in the merging process.

Semantic Mapping for Instruction Grounding. Semantic maps
are critical in VLN, as they allow agents to reason over spatial
and semantic structures for instruction interpretation and execu-
tion [9, 40]. Early works project 2D instance masks onto bird’s-
eye-view layouts [5, 21], or aggregate features into top-down grids
to support open-vocabulary querying [10, 37]. VLMap [9] intro-
duces semantic grid maps and uses LLMs to translate instructions
into open-vocabulary object names. ConceptGraphs [7] and HOV-
SG [38] further enhance instruction interpretation by constructing
spatial graphs over scene instances, enabling explicit modeling of
inter-object relationships. However, these methods still rely on pre-
defined labels or coarse semantic features, limiting their ability to
support fine-grained, open-vocabulary instruction grounding.

3 Methodology
3.1 Method Overview

An overview of OpenMap is shown in Fig. 2. We follow a generic
agent setting for embodied localization [18, 41] and navigation [9,
22], where an agent collects a sequence of RGB-D observations
during exploration [16, 17], denoted as 7 = {1, I, ..., IT} and D =
{D1, D, ..., DT}. For each frame I;, we apply an off-the-shelf 2D
segmentation model to generate masks {mlt |i=1,..,n:} and use
a vision-language model to extract corresponding open-vocabulary
features {flt | i=1,..,n;}, where n; is the number of masks in I;.

During the semantic mapping stage (§3.2), we apply structural
and semantic consensus constraints to determine whether any two
masks across the image sequence correspond to the same instance,
and iteratively merge those that satisfy both into a unified 3D
instance. We then adopt a completeness-guided strategy to select
representative masks and aggregate their features to form a holistic
semantic embedding for each instance.

In the instruction grounding stage (§3.3), the agent receives
a natural language instruction and leverages an LLM to parse it
into a target instance description. Unlike conventional methods
constrained by predefined vocabularies, our approach allows for
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free-form, fine-grained descriptions of navigation goals. Guided by
OpenMap, the LLM selects the most semantically relevant instance
by reasoning over candidate regions and their associated features
within the constructed map.

3.2 Structural-Semantic Consensus Mapping

The core philosophy behind constructing OpenMap is to concur-
rently consider both spatial structure and semantic feature con-
straints across different observations.

To visualize this concept, consider a scenario where three ob-
servers (e.g., Oa, Op, and O¢) are examining the same object (e.g.,
a bunch of roses) from distinct angles. How should they describe it
to ascertain that they are indeed looking at the same object?

o Semantically, the observations should exhibit similarities—for
instance, O4 might note ‘a few green leaves’, Op could describe
‘three roses’, and O¢ might see a ‘bunch of flowers’.

o Structurally, there should be a consensus, such that the parts of
the instance observed by O 4 and Ogp are also encompassed in O¢’s
observation, suggesting that these observations originate from the
same instance.

We proceed by modeling these structural-semantic consensus
constraints to facilitate precise instance merging.

3.2.1 Structural-Semantic Consensus Rate Computing. For
any two masks m; and mj, we evaluate their potential for merging
by assessing the structural-semantic consensus rate between them.
Structural Consensus Rate. Drawing on well-established struc-
tural consensus analysis [35, 42], we strategically harness the re-
dundancy of observations to ensure structural self-consistency of
instances Specifically, following [44], we back-project each mask
my. into a 3D point cloud Py using depth maps. If the point cloud of
an image I overlaps with Py (i.e., overlap exceeds 7,p), then mask
my. is deemed observable in image I, and we define 7 (my) as the
set of all images that can observe mask my.

We then identify the set of images that can simultaneously ob-
serve both masks m; and m; intended for merging, denoted as
O(mji, mj) = I (m;) N I (mj). Subsequently, we seek frames capa-
ble of supporting the merger of m; and m;. Specifically, for an image
I; containing a mask my. that spatially encompasses both m; and
m; (i.e., both have at least 7, of their point clouds within my), this
subset of images is defined as S(m;, mj) = {I; € O(m;, m;)|P;, Pj C
Py }. Consequently, the structural consensus rate for the two masks
m; and m; is calculated as the ratio of supporters to observers:

Rstruc.(mi,mj) = |S(mi,mj)|/|0(mi,mj)|. (1)

Semantic Similarity Rate. Another criterion for determining
whether masks can be merged is their semantic similarity. Diverg-
ing from traditional models that rely on a closed vocabulary, VLMs
like CLIP capture subtle semantic connections between observa-
tions, even different components of the same instance. As shown
in Fig. 3, features from the same instance are tightly clustered in
the latent space, while spatially close but distinct instances exhibit
clear feature separation.

Consequently, by integrating open-vocabulary feature similarity
metrics into instance merging, we can effectively reduce the mis-
alignment of different instances that are close in spatial structure
but semantically distinct. We define the semantic similarity rate

Danyang Li et al.
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Figure 3: Feature distribution of adjacent objects. Although
the triangle ruler is physically attached to the laptop, it remains
clearly distinguishable in the vision-language feature space.

between masks m; and m; as the cosine similarity between their
respective features f; and f;:

Rseman. (mi, mj) = COS(ﬁ,fj), 2

Put Together. In mask merging, we balance the above structural
consensus and semantic similarity. Specifically, when

Rstruc.(mi, mj) * Rseman. (mi, mj) 2 Tthres (3

masks m; and m; are considered to form the same instance, where
Tihres is @ predefined threshold.

3.2.2 Iterative Mask Merging. After computing pairwise re-
lationships between masks, we iteratively merge them following
the general procedure in [44]. This results in a set of 3D point
clouds, each representing a distinct instance, with open-vocabulary
semantic features aggregated from the corresponding masks.

Specifically, we prioritize merging mask pairs associated with
more robust observations (i.e., a larger |O(m;, m;)|). Therefore, dur-
ing the iterative process, we set a gradually decreasing threshold
for observer counts, N,. In each merging cycle, two masks, m; and
mj, are merged into a new mask, m; j, with its corresponding point
cloud, P; j, if they not only meet the conditions set by Eq. 3 but also
exceed the observer count threshold, |O(m;, m;)| > N,.

After each merging cycle, it’s necessary to recalculate the struc-
tural semantic consensus rate among the newly formed instances.
The strategy is as follows:

e Given the structural changes in the new instance, along with
altered observational and containment relationships, we update its
observers and supporters and recompute Rgtpyc..

e Furthermore, due to the aggregation of diverse observations, the
semantic features of the combined instance need to be updated. We
select the features from the mask that most completely captures
the point cloud of the new instance and recalculate Rgeman. -

Each iteration cycle reduces threshold N, allowing the instance
to incorporate more masks, and this process continues until no
further merging is feasible. At the end of the iterations, a list of 3D
instances is generated, each linked to multiple 2D masks.

Finally, based on the completeness of the instance’s observation,
we strategically aggregate features for each instance. Following
OpenMask3D [34], we select the top-k masks that best cover the
instance and obtain L multi-level crops from the corresponding
image areas. Subsequently, features are extracted from these k * L
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crops using CLIP, with the average pooling results serving as the
open-vocabulary feature vector for the instance.

3.3 Instruction-to-Instance Grounding

In everyday life, when colleagues hand over a task, from the ar-
ranger’s perspective, it is essential to describe the requirements as
accurately as possible, rather than being vague. From the executor’s
perspective, any unclear requirements should be clarified based on
contextual information to eliminate ambiguities.

These experiences are equally applicable to embodied navigation
tasks, and the parsing of instructions to instances adheres to the
following principles:

o When utilizing LLMs for instruction translation, the instructions
should be converted into instances described precisely in natural
language, instead of choosing from a limited set of dataset labels or
an instance dictionary specific to a certain scenario.

e Even with accurate instance descriptions, there may be multi-
ple suitable targets in the scene, and agents should enhance their
decision-making by considering contextual information such as the
locations of candidates and their surrounding environment.

Next, we will discuss how to utilize OpenMap to assist LLMs in

implementing these concepts.
Generic Instruction Parsing. We first utilize an LLM to convert
generic navigation instructions into precise instance descriptions
that enable target retrieval within OpenMap. Unlike existing meth-
ods that translate various types of navigation instructions into
targets from a fixed instance dictionary [22], our approach fun-
damentally differs in that we do not restrict the LLM outputs to
predefined dictionary terms, thus fully unleashing its vast knowl-
edge and analytical capabilities.

The textual prompt is composed of the following key compo-
nents: (1) Navigation Task Definition: Similar to existing work in
navigation instruction analysis, we provide the background of the
navigation task, including environmental information and the for-
mat of the instructions. (2) Instance Description Criteria: We retain
the descriptions of instance characteristics from the original naviga-
tion instructions and infer additional features based on environmen-
tal information to reduce linguistic ambiguities. (3) Output Format
Constraints: We streamline the instance descriptions to avoid exces-
sive length, given that most existing VLMs (e.g., the original CLIP)
have limited capabilities to process long and complex texts.

For an instance description derived from a navigation instruction,
where the VLM encodes the feature vector as f;, we calculate the
similarity with all instance features in OpenMap {fi, f2, ..., fv } and
rank them. The top N, are selected as candidate instances.
Instance Selection with OpenMap. Due to the potential pres-
ence of multiple instances in a scene that closely match the target
description, relying solely on semantic similarity often fails to pro-
vide accurate measurements. However, leveraging environmental
constraints around candidate instances can significantly enhance
the performance of targeted retrieval. A typical case is "Prepare the
chair, I want to eat". Typically, chairs can found in every room, but
the follow-up prompt "I want to eat", implies that the chair needed
is one near the dining table.

For N, candidates, we further refine our selection using the in-
stance information provided by OpenMap. Specifically, for each

Navigation Instruction

| Language-guided Ins. |}
“Exit the bedroom, turn
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Figure 4: Instruction-to-Instance Grounding pipeline. In the
first round, the LLM generates a precise description of the naviga-
tion target and retrieves candidate instances from OpenMap. In the
second round, it reasons over the candidates and their surrounding
context to infer the final target instance.

candidate instance I, we use a KD-tree to search within OpenMap
for the Ny nearest instances I;; (i=1,2, .., Ns)within a 2-meter
radius. Subsequently, we label these I;'C (e.g., match with the labels
from the LVIS dataset [8]). Note that applying fixed labels here is
solely to assist the LLM in instance selection and does not compro-
mise the open-vocabulary querying capabilities of OpenMap.
Next, we initiate a second round of dialogue with the LLM, pro-
viding details about the candidate instance and its surrounding ob-
jects, and determining the final retrieval target through a multiple-
choice format. The template for providing instance information in
the prompt is abstracted as follows:
"Candidate Instance I: {location: (x, yg, zx); semantic similarity:
rg; surrounding objects: [I;;, location: (xi , y;'c, Zlic)’ label: l]ic], -

4 Experiments

In this section, we evaluate OpenMap against current SOTA meth-
ods in terms of semantic mapping and target retrieval.

4.1 Experimental Setup

Dataset. We utilize the ScanNet200 validation dataset [30] to evalu-
ate OpenMap’s semantic mapping capabilities. This dataset features
312 indoor scans across 200 categories, organized into three subsets
based on the frequency of instance occurrences, allowing for an
effective assessment across a long-tail distribution. Additionally,
we examine OpenMap’s navigation target retrieval effectiveness
with the Matterport3D Semantics dataset [43], following estab-
lished navigation map research [9][38]. Our evaluation spans 20
scenes—11 from the R2R-CE val-unseen split [14] and 9 from the
VLMap evaluation dataset [9]. We construct a comprehensive set
of test cases using subsets of navigation instructions from R2R-
CE, VLMap, and ALFRED ([32], covering three instruction types:
object-goal, demand-driven, and language-guided.
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Model Features Semantic Class-agnostic
AP AP59p APy; head(AP) common(AP) tail(AP) AP AP5y APjys

sup. mask + sup. semantic

Mask3D [31] - 269  36.2 414 39.8 21.7 17.9 39.7 53.6 62.5

sup. mask + z.s. semantic

OpenScene [27] + Masks ~ OpenSeg [6] 11.7 152 17.8 13.4 11.6 9.9 39.7 536 625

OpenMask3D [34] CLIP [29] 154 199 23.1 17.1 14.1 14.9 39.7 53.6 62.5

z.s. mask + z.s. semantic

OVIR-3D [24] CLIP [29] 9.3 18.7 25.0 10.1 9.4 8.1 144 275 38.8

MaskClustering [44] CLIP [29] 12.0 233 30.1 11.9 10.5 13.8 19.0 36.6 50.8

OpenMap (Ours) CLIP [29] 14.3 26.0 33.3 14.5 13.8 14.7 19.8 38.0 51.8

Table 1: 3D Instance Segmentation Results on ScanNet200 [30]. Mask3D [31] requires supervised (sup.) training on ScanNet200 for
mask and semantic extraction. OpenScene [27] + Masks and OpenMask3D [34] depend on masks provided by Mask3D. In a fully zero-shot
(z.s.) setting, our method, OpenMap, surpasses both OVIR-3D [24] and MaskClustering [44] across all metrics.

Method SR[%] SR4[%] SRg[%] SR16[%]
NLMap [2] 25.1 28.4 31.5 37.1
VLMap [9] 27.2 29.7 32.1 37.5
ConceptGraphs [7] 40.9 434 50.6 54.9
OpenMap (Ours) 49.6 58.3 68.2 73.7

Table 2: Navigation target retrieval results on Matterport3D
[43]. Compared with existing open-vocabulary mapping methods
designed for navigation tasks, OpenMap achieves the best perfor-
mance across all target retrieval success rate metrics.

Baselines. We evaluated OpenMap against SOTA 3D semantic
mapping and VLN target retrieval methods. For semantic mapping,
Mask3D [31] is a representative work trained under supervision
on ScanNet200. OpenScene [27] is an open-vocabulary 3D scene
understanding model that generates per-point feature vectors, for
which we average the per-point features within each instance mask,
following the approach in [34]. OpenMask3D [34] utilizes super-
vised mask proposals from Mask3D and employs CLIP for open-
vocabulary semantic aggregation. OVIR-3D [24] and MaskCLus-
tering [44] are zero-shot open-vocabulary mapping methods that
aggregate instances progressively from 2D to 3D, closely related
to our approach. For target retrieval, NLMap [2] and VLMap [9]
utilize LLMs to retrieve targets of known categories on constructed
queryable maps. ConceptGraphs [7] and HOV-SG [38] further en-
hance the object retrieval and reasoning capabilities by constructing
graphs between instances.

Metrics. To validate our mapping accuracy, we report Average Pre-
cision (AP) at 25% and 50% Intersection over Union (IoU) thresholds,
along with the mean AP from 50% to 95% at 5% intervals. We also
evaluate performance in a class-agnostic setting that focuses solely
on mask quality, ignoring semantic labels. For target retrieval in
OpenMap, we use the Success Rate (SR), defined as successful if
the target is retrieved within 1 meter of the ground truth center.
Additionally, we measure the top-k Success Rate (SRy), indicating
success within up to k retrieval attempts in the scene.

Implementation Details. To obtain complete object masks rather
than overly fragmented results (i.e., all pixels of an object belonging
to one mask), we employ CropFormer [23, 28] for 2D segmenta-
tion. An intuitive approach for encoding visual-language features
for each mask involves cropping bounding boxes and extracting
features using CLIP. However, this process generates an excessive
number of image patches and, limited by CLIP’s processing speed,
proves inefficient. We utilize OVSAM [46] to extract features for can-
didate regions within an image in one go, which is achieved by using
the bounding boxes of these regions as prompts for OVSAM. Note
that OVSAM features are only used for computing the semantic
similarity rate. For a fair comparison of semantic matching capabil-
ities with existing methods, we use features extracted by CLIP [29]
ViT-H for the final feature aggregation. We apply post-processing
methods from MaskCLustering to filter under-segmented masks
and separate disconnected point clusters into distinct instances.
Regarding parameter settings, in §3.2.1, the observational thresh-
old for masks 7,,s = 0.3, the containment threshold for masks
Teup = 0.8, and the threshold of structural-semantic consensus
rate Typ,es = 0.6; in §3.2.2, the initial threshold for the number of
observers N, is set at the top 5% of all mask pairs, reducing by
5% in each iteration until the process concludes; in §3.3, the num-
ber of candidate instances N, = 8 and the number of neighboring
instances Ng = 5.

4.2 Mapping Performance

Quantitative Results. Following standard practice in both super-
vised and zero-shot semantic mapping, we primarily report results
on ScanNet200 as it serves as the most widely adopted benchmark,
enabling fair comparison with prior work. As shown in Table 1, we
categorize the comparison methods into three groups.

Compared to the fully zero-shot OVIR-3D and MaskClustering,
OpenMap achieves the highest accuracy on ScanNet200 in both
semantic and class-agnostic metrics. Specifically, OpenMap shows
a 19.2% improvement in average semantic AP over MaskCluster-
ing, which only considers structural features during aggregation.
Furthermore, compared to OVIR-3D, which processes local geo-
metric and semantic features frame by frame, OpenMap, which
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Figure 6: Semantic mapping results on ScanNet200.

incorporates global feature semantic consensus, shows even more
pronounced improvements, with increases of 53.8% in semantic
AP and 37.5% in class-agnostic AP. Notably, compared to these
zero-shot methods, OpenMap maintains consistently high perfor-
mance across head, common, and tail categories, with an AP gap
not exceeding 1.1%. This capability to handle instances of varying
frequencies highlights OpenMap’s robust open-vocabulary abilities.

In contrast with OpenScene and OpenMask3D, OpenMap, lack-
ing any prior knowledge from ScanNet200, still shows a significant
gap in the class-agnostic metrics. Nevertheless, OpenMap signifi-
cantly surpasses OpenScene in all semantic metrics due to its lack
of strategic open-vocabulary feature aggregation. Moreover, Open-
Map is close to OpenMask3D in semantic AP, even exceeding it
in AP50 and AP25 by +6.1% and +10.2%, respectively. Additionally,
OpenMask3D is a semantic mapping method based on 3D-to-2D
projection, using a complete 3D point cloud of the scene as a prior.

In navigation tasks where the scene is progressively explored, our
method, OpenMap, fits more seamlessly, able to integrate into ex-
isting navigation tools as a fundamental semantic map to support
downstream tasks.

Qualitative Results. As shown in Fig. 5 and Fig. 6, we present
qualitative instance segmentation results of OpenMap on Matter-
port3D and ScanNet200 scenes. OpenMap demonstrates strong
performance in two key scenarios: (1) accurately segmenting small
objects attached to larger surfaces (e.g., scattered items on a ta-
ble or glasses on a tray); and (2) preserving the completeness of
large objects despite limited viewpoint coverage (e.g., preventing
large sofas, tables, and beds from being mistakenly fragmented).
Notably, in the first subview of the Matterport3D scene, OpenMap
successfully segments individual items on the tray, such as bowls
and glasses. However, the ground truth merges these into a single
instance, leading to a false negative during evaluation despite the
correctness of the prediction.

4.3 Target Retrieval Performance

Quantitative Results. OpenMap is designed to achieve accurate
grounding of navigation instructions to scene instances, a task that
jointly evaluates the quality of semantic mapping and the effec-
tiveness of instruction-to-instance grounding. We compare Open-
Map against two representative visual-language mapping baselines,
NLMap [2] and VLMap [9], as well as the recent SOTA method
ConceptGraphs [7], in terms of target retrieval success rate. For
each trial, all methods first perform full-scene mapping, followed
by instruction parsing via a LLM, and then query the target loca-
tion based on the generated map. To ensure a fair comparison, all
methods employ GPT-4 [1] as the LLM.

As shown in Table 2, OpenMap significantly outperforms the
baselines across all success rate metrics. In particular, under the
SR metric—which reflects the most practical requirement in navi-
gation (i.e., succeeding on the first attempt)—OpenMap surpasses
NLMap, VLMap, and ConceptGraphs by +24.5%, +22.4%, and +8.7%,
respectively. Among the baselines, VLMap suffers from a coarse
feature aggregation strategy (i.e., average pooling over 2D grids),
which fundamentally limits the quality of the underlying semantic
map and thus its retrieval capability. ConceptGraphs, on the other
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Structural. Semantic. ‘ AP AP5yp APys
v X 12.2 23.4 30.2
X v 10.1 19.3 26.7
v v 14.3 26.0 33.3

Table 3: Ablation study on Mapping methods.

Ins. Parsing Ins. Selec. | SR[%] SRg[%] SRys[%]
X X 38.1 61.0 67.6
v X 47.2 68.2 73.7
X v 447 610 67.6
v v 49.6  68.2 73.7

Table 4: Ablation study on Grounding methods.

hand, relies on pre-defined labels for instances, which restricts its
generalization to diverse natural language descriptions.
Qualitative Results. Fig. 1 shows instance-colored segmenta-
tion results and similarity heatmaps generated by OpenMap on
a Matterport3D scene (ID: 8194nk5LbLH). As shown in Fig. 1a,
the semantic map yields accurate instance-level segmentation for
both common objects (e.g., sofas) and uncommon structures (e.g.,
columns). White regions in the overview indicate missing scan
data. In Fig. 1b, OpenMap accurately localizes target instances for
object-goal, demand-driven, and language-guided navigation tasks.
Notably, the heatmaps reveal that even non-top candidates retain
task-relevant attributes. For example, in the object-goal case (e.g.,
“a pair of lounge chairs”), secondary matches preserve key spatial
and functional cues such as seating layout and back-to-back config-
uration. In demand-driven scenarios (e.g., “Where should I eat?”),
nearby tables also reflect contextual relevance.

4.4 Ablation Studies

Ablation Study on Mapping. In Table 3, we evaluate the impact
of two key components in OpenMap’s mapping pipeline (§3.2):
structural consensus (Structural.) and semantic similarity (Seman-
tic.). When using only structural consensus, the AP drops from
14.3 to 12.2, yet remains higher than all zero-shot baselines. More-
over, since spatial structural relations are essential for associating
instances in 3D reconstruction, structural constraints cannot be
entirely removed. To evaluate the performance of using only se-
mantic similarity, we adopt the local structural similarity metric
from OVIR-3D as a baseline. The result shows a significant AP drop
of 4%. When both components are used jointly, OpenMap achieves
the best performance, as expected. These results confirm that both
structural and semantic cues are critical to the effectiveness of
OpenMap’s mapping strategy.

Ablation Study on Instruction Grounding. Table 4 presents an
ablation study on two key strategies in the instruction-to-instance
grounding (§3.3): unconstrained instruction parsing without re-
stricting LLM outputs to a predefined vocabulary (Ins. Parsing),
and OpenMap-assisted instance selection (Ins. Selec.). When Ins.
Parsing is removed, we follow the parsing approach used in VLMap
as a baseline. Experimental results show that removing both strate-
gies leads to a drop of over 10% in SR compared to the full Open-
Map pipeline. Nevertheless, due to the accurate semantic map, our

Danyang Li et al.

| AP APs APys
Tthres (05-07) | 14.0£0.34  36.9+£1.14 49.4+2.41

Table 5: Impact of consensus threshold.

| SR[%] SRg[%]  SRie[%]
Ne (4-12) | 47.7£1.9 57.6+0.7 68.2%0.0

Table 6: Impact of candidate number.

method still outperforms VLMap and NLMap (see Table 2), and
achieves better performance than ConceptGraphs on SRg and SRye.
Individually, removing Ins. Parsing results in a 4.9% decrease in SR,
while excluding Ins. Selec. causes a 2.4% drop. Notably, since Ins.
Selec. performs filtering within the top-8 most relevant candidates,
its removal does not affect SRg and SR1¢. The results demonstrate
that OpenMap effectively unlocks the instruction interpretation
capabilities of LLMs.

Ablation Study on Hyperparameters. We conducted additional
evaluations to assess the robustness of our algorithm with respect
to key hyperparameters. As shown in Table 5, we first examined
the effect of the consensus threshold used in the mapping stage.
Within the range of 0.5-0.7, the AP variation remains within 0.34.
The lowest performance occurs at a threshold of 0.7, yielding an
AP of 13.7, while the highest AP of 14.3 is achieved at 0.6, which we
adopt in practice. We further evaluated the impact of the number
of candidate instances used in instruction-to-instance grounding.
As shown in Table 6, SR remains stable within a 1.9% fluctuation
when the candidate count ranges from 4 to 12, with the best perfor-
mance (49.6% SR) observed at 8 candidates. These ablation results
demonstrate the consistent and robust performance of OpenMap
across a range of hyperparameter settings.

5 Conclusion

We present OpenMap, a zero-shot open-vocabulary visual-language
mapping framework for accurate instruction grounding in embod-
ied navigation. To address challenges in instance inconsistency
and limited instruction expressiveness, we propose a structural-
semantic consensus constraint for robust 3D instance aggregation
and an instruction-to-instance grounding module for fine-grained
grounding of free-form commands. Extensive experiments on Scan-
Net200 and Matterport3D demonstrate that OpenMap consistently
improves both semantic mapping and instruction to target instance
retrieval under zero-shot settings. By enabling precise alignment
between natural language instructions and 3D scene instances,
OpenMap makes a concrete step toward more reliable and general-
izable instruction execution in real-world navigation tasks.
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