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Abstract—Environment depth estimation by fusing camera and
radar enables a broad spectrum of applications such as autonomous
driving, environmental perception, context-aware localization and
navigation. Various pioneering approaches have been proposed
to achieve accurate and dense depth estimation by integrating
vision and LiDAR through deep learning. However, due to the chal-
lenges of sparse sampling of in-vehicle LiDARs, high ground-truth
annotation overhead, and severe dynamics in real environments,
existing solutions have not yet achieved widespread deployment
on commercial autonomous vehicles. In this paper, we propose
LeoVR , a motion-inspired self-supervised visual-LiDAR fusion
approach that enables accurate environment depth estimation.
Leveraging the vehicle motion information, LeoVR employs two
effective system frameworks to (i) optimize the depth estimation
results, and (ii) provide supervision signals for DNN training. We
fully implemented LeoVR on both a robotic testbed and a commer-
cial vehicle and conducted extensive experiments over an 8-month
period. The results demonstrate that LeoVR achieves remarkable
performance with an average depth estimation error of 0.17 m, out-
performing existing state-of-the-art solutions by> 45.9%. Besides,
even cold-start in real environments by self-supervised training,
LeoVR still achieves an average error of 0.2 m, outperforming the
related works by > 47.8% and comparable to supervised training
methods.

Index Terms—Depth estimation, factor graph, self-supervised
learning, visual -LiDAR fusion.

I. INTRODUCTION

ENVIRONMENT depth estimation aims at obtaining geo-
metric properties of surrounding 3D space from 2D images

and associated sensor inputs [1], [2], [3]. Typically, it generates a
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depth map1 for each input image [4], [5], [6]. The benefit of depth
estimation is to enhance the environmental perception capability
of intelligent machines (robots, drones, vehicles, etc. ), which
lies in the heart of numerous applications such as autonomous
driving [7], [8], [9] and robotics [10]. For instance, with accurate
depth maps, vehicles and drones can avoid obstacles and better
interact with environment [1], [11], [12]. Notably, recent reports
suggest that incorrect depth estimation of ambient humans or
objects has been identified as the primary cause of a majority of
autonomous driving accidents since 2020 [13], [14], [15].

Current environment depth estimation practice on au-
tonomous vehicles typically resorts to fusing camera and Li-
DAR. Compared to stand-alone visual approaches [6], [16],
LiDAR can provide accurate 3D location of essential reflection
points in the scene using time-of-flight (TOF), thus significantly
compensating for the shortcomings of visual depth misestima-
tion due to the lack of scale information. The state-of-the-art
(SOTA) visual-LiDAR fusion approaches design Deep Neural
Networks (DNNs) as depth map generators that directly take 2D
visual images and associated 3D LiDAR point clouds as input
and output the depth maps of surroundings [17], [18], [19].

Albeit inspiring, our 8-month field study reveals that previous
solutions face significant challenges in deploying in real-world
environments. The crucial drawbacks are twofold:
� Degraded performance with commercial in-vehicle Li-

DAR: The current practice of depth mapping in au-
tonomous vehicles has demonstrated impressive results [1],
[2]; however, it heavily relies on high-end and expensive
LiDAR sensors such as Velodyne 16-line (VLP-16), 32-
line (HDL-32E), and even 64-line (HDL-64E) [21], which
come at a considerable cost of approximately $4 k, $20 k,
and $80 k respectively, to generate dense point clouds.
In contrast, due to the consideration of device cost, most
vehicles are merely equipped with lower-cost yet sparsely
sampled LiDARs (e.g., Livox Mid-40 costs $500 [22]). As
illustrated in Fig. 1(b), Mid-40 generates merely one-third
as many 3D points as VLP-16 LiDAR within a 0.1 s
laser scan cycle and suffers from a narrower Field-of-View
(FoV) coverage. With more sparse and irregular point
clouds, the depth estimation performance of existing works
degrades. As shown in Fig. 1(c) and (d), the estimation

1In this work, a depth map is an additional image channel that contains
information relating to the distance of the surfaces or objects from associated
image pixels.
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Fig. 1. Glimpse of depth estimation performance of LeoVR and existing solutions. (a) Visual images of the static and dynamic scene. (b) Associated LiDAR point
clouds sampled by Mid-40 (cheap yet sparse) and VLP-16 (dense yet expensive). (c)-(e) are the depth map generated from state-of-the-art methods: DenseLiDAR [1]
(a supervised learning-based solution), Self-S2D [20] (a self-supervised learning-based solution), and LeoVR (our solution), respectively. (f) is the ground truth.
The bluer represents closer while the redder indicates further. The red dotted box in each picture bounds static figure sculptures or dynamic vehicles. And the value
in the left-bottom corner is the average estimation error of all pixels in the depth map.

accuracy was reduced by almost 50% when equipped with
the sparsely sampled Mid-40. We can also find that an
accuracy drop of around 0.15 m would make it difficult
to segment important objects in the current scene, as illus-
trated in Fig. 1(c), where the figure sculptures or vehicles
become blurred and indistinguishable with Mid-40.

� High ground-truth annotation overhead: These deep learn-
ing based solutions typically need pixel-level depth ground
truth annotations to train depth map generators in advance.
What’s worse, the cumbersome training procedure needs
to be repeated for different environments, resulting in high
labor cost and system overhead [1]. Although some recent
works have proposed self-supervised training frameworks
to deal with this issue [20], [23], [24], they extract training
signals between consecutive frames and highly depend on
the static-rigid world assumption [25], [26], [27], which
is unrealistic in real complicated road conditions with re-
flections, shadows, and highly dynamic humans or objects
(the bottom picture in Fig. 1(a)). As a consequence, the
estimation performance of the self-trained model degrades
in real environments. As illustrated in Fig. 1(d), compared
to the depth maps generated in the static scene, the depth
estimation error expands dramatically when the depth map
generator cold starts by self-supervised training in a com-
plex environment.

In this work, we aim to solve the above two challenges
and propose LeoVR , a self-supervised solution that enables
accurate environment depth estimation by fusing camera and
LiDAR. Compared to current practice, LeoVR is profitable for
generating depth maps with low-cost in-vehicle LiDARs, and the
depth generator could be self-trained for cold starts even in real
complicated environments. A comparison among LeoVR and

TABLE I
OVERALL SYSTEM COMPARISON

related works are recorded in Table I, as well as an illustration
in Fig. 1. As seen, LeoVR achieves remarkable performance
even with the low-cost LiDAR. Our key insight behind LeoVR
is that a vehicle’s motion information could provide additional
spatio-temporal constraints among successive depth maps gen-
erated by the vehicle (e.g., a depth map of the current frame
could also be partially inferred by that of the previous frame and
the inter-frame motion of the vehicle). These spatio-temporal
constraints could be served as prior information to optimize
the accuracy of depth maps (Section III-A), and on the other
hand, provide guidance for extracting reliable pixel-level train-
ing signals to train the depth map generator (Section IV-A). Em-
bedding this motion-aware information into the system frame-
work, our design of LeoVR excels in two unique aspects as
follows.

First, to push forward the accuracy of depth maps generated
by fusing camera and low-cost LiDAR, at the core of LeoVR is
a motion-aware Learning-embedded optimization scheme for
Visual-Radar fusion. Specifically, we design a factor-graph-
based optimization framework which jointly optimizes: (i) the
3D locations of spatial feature points extracted from LiDAR
samples and 2D visual images; (ii) the vehicle’s motion and
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pose estimated by visual-LiDAR odometry; and (iii) the depth
maps generated by a DNN. Compared to related works, we do
not hastily take the output of a depth map generator from DNN as
the final depth map. On the contrary, we extract the intermediate
results of the generator as variable nodes and refine the depth
maps exploiting the spatio-temporal constraints (i.e., associated
factor nodes) imposed by the vehicle’s motion information.
Furthermore, to fully leverage the complementary abilities of
cross-modal inputs, we introduce an inter-sensor cross-attention
mechanism in the depth map generator, enhancing the DNN’s
capacity to handle environmental uncertainty.

Second, to ease the burden of annotating ground truth for
training the depth map generator, we propose a motion-optical
flow instructed self-supervised framework. In LeoVR , with the
awareness of vehicle motion, we exploit the pixel-level dense
optical flow between adjacent frames and select pixels whose
optical flow is consistent with the camera motion for training
the DNN. The motion-optical flow consistency constraint could
filter out those pixels whose photometric changes are disturbed
by environmental dynamics (e.g., reflections, shadows, or highly
dynamic humans or objects) rather than originating from cam-
era’s movement. Moreover, to further enhance the reliability of
self-supervised training, we introduce a pose quality assurance
strategy that utilizes global view information to obtain drift-free
motion estimates as supervision signals. On this basis, unlike
previous solutions, LeoVR achieves effective self-supervised
training performance even in complicated real-world environ-
ments.

We have fully implemented LeoVR on a robotic testbed and
intelligent vehicles with different types of cameras and LiDARs.
Comprehensive experiments are carried out in four different
scenarios (two indoor and two outdoor) across 8 months, collect-
ing 3,720 trajectories with 1,126,550 frames. We compare the
performance of LeoVR with two learning-based depth estima-
tion methods (DenseLiDAR and DeepLiDAR). The experiment
results show that LeoVR achieves an average depth estimation
error of 0.141 m and 0.173 m when equipped with a Velodyne
VLP-16 and Livox Mid-40 LiDAR respectively, outperforming
comparative approaches by > 25.7% and > 45.9%. We further
evaluate the effectiveness of the proposed self-supervised frame-
work with another two state-of-the-art self-supervised visual-
LiDAR fusion solutions, Self-S2D and Self-VLO [23]. Without
any pre-training and entirely based on self-supervised training,
LeoVR still achieves an average depth estimation error of 0.201
m when equipped with Livox Mid-40, which outperforms related
works by 47.8% and is comparable to those supervised training
methods. Furthermore, as a universal approach to fusing sensing
modalities for environment perception, we conducted a case
study to showcase the versatility of LeoVR in adapting to indoor
environments for RGB-D depth completion.

The key contributions are summarized as follows:
� We propose LeoVR , as far as we are aware of, the first self-

supervised solution that enables commercial autonomous
vehicles to generate accurate depth maps by fusing vision
and low-cost LiDAR. LeoVR pushes forward depth esti-
mation techniques for on-vehicle, low-cost, and large-scale
deployments in real environments.

Fig. 2. System architecture of LeoVR .

� We provide a fresh perspective to embed a vehicle’s motion
information into the system framework design. Based on
an in-depth exploration of the spatio-temporal constraints
behind motion information, we design a motion-aware
fusion framework to boost the depth estimation accuracy
and a motion-instructed self-supervised paradigm to ease
the pixel-level ground truth annotation burden.

� We introduce an inter-sensor cross-attention mechanism
and a pose quality assurance strategy to enhance the robust-
ness of depth map generator in challenging environments,
potentially serving as a foundation for future vehicle per-
ception model design and training.

� We extensively evaluate the performance of LeoVR with
4 comparison works in 4 different real scenarios across
8 months. The results demonstrate that LeoVR could
greatly broaden the capabilities of LiDAR-based map-
ping, especially realizing remarkable depth estimation and
self-supervised training performance even with low-cost
LiDARs.

II. SYSTEM OVERVIEW

Fig. 2 sketches the system architecture of LeoVR . From the
top perspective, LeoVR consists of two components: a learning-
embedded motion-aware optimization scheme (Section III) and
a motion-optical flow instructed self-supervised framework
(Section IV). The former part aims for visual-LiDAR fusion and
resulting accurate depth maps estimation. The latter supports the
self-supervised training of the depth map generator in a DNN
and reduces the ground truth annotation costs.

Specifically, LeoVR takes consecutive time-synchronized
monocular RGB images and low-cost LiDAR measurements as
inputs. Then, a DNN, named depth map generator, generates
initial dense maps which will be further extracted as depth
variable nodes with prior depth information in a factor graph.
Thereafter, the factor graph leverages visual and radar inputs as
well as the depth variable nodes to joint optimize (i) the vehicle’s
motion; (ii) 3D point clouds; and (iii) acquire refined dense depth
maps. Furthermore, these optimized results will be exploited as
an instructor to select which pixels could be used for training
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the model. Based on this two-way promotion process, LeoVR
achieves a promising depth estimation performance through a
self-supervised training manner.

III. LEARNING-EMBEDDED MOTION AWARE OPTIMIZATION

SCHEME

In this section, we present the design of the motion-aware
learning-embedded optimization scheme for visual-LiDAR fu-
sion that enables LeoVR to achieve an accurate depth estimation
performance. In LeoVR , we use the depth map generator
proposed in [28] as the backbone of our model, which ta kes
a 2D RGB image and 3D LiDAR point clouds as input and
outputs a depth map. To facilitate the complementary interaction
between sensors, we incorporate a cross-attention module into
the depth map generator, which enables the efficient fusion of
features extracted from both modalities. Instead of directly treat-
ing the outputs of the depth generator as the final depth maps,
LeoVR leverage a factor-graph based optimization framework
exploiting these intermediate results to jointly optimize the point
clouds, vehicle (i.e., camera and attached LiDAR’s) motion,
and depth maps within a time window. Briefly, an optimization
takes consecutive visual images, corresponding LiDAR samples,
and intermediate depth information extracted from a depth map
generator as inputs and then refines the depth of each pixel in
the images. In what follows, we first describe and illustrate some
essential variables and definitions of the optimization problem,
as well as analyze the rationale behind our insight that joint
optimization could improve the depth estimation accuracy. The
upcoming section entails an elucidation of crucial variables and
definitions of the optimization problem. Additionally, we pro-
vide a detailed explanation of the rationale behind our hypothesis
that joint optimization has the potential to enhance the accuracy
of depth estimation (Section III-A). Then, we provide a brief
overview of the network architecture and analyze the underly-
ing mechanism of the cross-attention mechanism in effectively
integrating multi-modal features (Section III-B). Further, we
present how to formulate the factor graph with associated factor
nodes and variable nodes to solve the optimization problem
(Section III-C).

A. Optimization Problem Statement

LeoVR utilizes three distinct reference systems: the camera
reference systemC, the LiDAR reference systemL, and the world
reference system W. To simplify the notation, we omit the fixed
transforms of the camera and LiDAR reference systems, which
are rigidly attached to the vehicle. The objective of optimization
is to refine the depth map provided by the depth map generator.
To exploit the spatial correlation between consecutive depth
maps, the pose of the vehicle, represented as a 6-DoF trans-
formation from W to C, is continuously estimated. Specifically,
we define the pose at frame i as follows:

θi � {Ri, ti} ∈ SE(3), (1)

where Ri and ti are rotation and translation, respectively.
Additionally, we also optimize the 3D feature point extracted

Fig. 3. Illustration of essential variables and their spatial relationships.

from multi-view visual images to maintain global consistency
of optimization.

Rationale behind the joint optimization: As illustrated in
Fig. 3, the spatial location of a 3D feature point P k and its
associated 2D pixel location pi

k, pj
k on visual images Ii, Ij

at timestamp ti and tj are relevant to the LiDAR samples and
camera’s motion (i.e., pose transformation T ij). Further, the
depth value of pixels pi

k and pj
k on depth maps, Di(p

i
k) and

Dj(p
j
k), in addition to acquiring through the depth generator,

could also be determined by the spatial location of P k and
camera’s motion T ij . In a nutshell, for each pixel on the depth
map, we have two independent yet complementary ways to esti-
mate its depth. Intuitively, we could integrate these two different
approaches to achieve higher depth estimation accuracy. To this
end, LeoVR proposes a joint optimization framework based on
the probabilistic characteristics of these two depth estimation
methods.

Optimization goals: The overall optimization objective is to
calculate the scene depths, poses, and feature points visible up
to the current time tc:

Xc �
⋃
i∈Fc

{Di,θi}
⋃
k∈Pc

{P k} , (2)

whereFc is a list of frames within a fixed lag smoothing window,
and Pc is a set of feature points observed by those frames.

We aim to maximize the likelihood of measurements from the
monocular camera, LiDAR, and depth map generator, given the
history of states:

X∗
c = argmax

Xc

p (Xc | Zc) ∝ p (X0) p (Zc | Xc) , (3)

whereZc is the set of measurements received within the smooth-
ing window, Xc represents the state variables, and X0 is the
prior state. We express the above equation as a nonlinear least
squares problem:

X∗
c = argmin

Xc

∑
i∈Fc

( ∑
k∈Pi

‖Evision(θi,P k)‖2Σv

+
∑
k∈Pi

‖Elidar(θi,P k)‖2Σl
+

∑
j∈Ni

‖Edepth(Di,Dj)‖2Σd

)
,

(4)
where Ni represents the set of nearby frames of frame i. Each
term in the above equation represents the residual associated
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Fig. 4. Network architecture of the proposed depth map generator.

with a particular factor type, and is weighted by the correspond-
ing information matrix Σ (i.e., inverse of the covariance ma-
trix, where ‖E‖2Σ = ETΣE). Specifically, Evision and Elidar

represent two types of feature point residuals, whereas Edepth

represents the residual associated with the depth map.

B. Depth Map Generator

Network Architecture: Our depth map generator utilizes an
encoder-decoder structure and includes three main components:
an RGB image encoder, a LiDAR points encoder, and a depth
estimation decoder, as shown in Fig. 4. Features from each
modality are fused using cross-attention to promote complemen-
tary interaction. Furthermore, skip connections are employed at
each scale to fuse the features from the encoder branches and
the decoder to recover fine-grained details in the depth map.

Inter-sensor Cross-attention: We proposed a cross-attention
mechanism to equip the multi-modal depth map generator with
the ability to adapt to environmental uncertainties. The funda-
mental idea behind attention is to selectively emphasize features
that are more informative for the task at hand, while downplaying
less relevant ones, which is particularly useful when dealing with
non-local dependencies between input modalities [19], [29]. By
selectively attending to important features in both the image
and LiDAR inputs, our network can effectively fuse information
from the two modalities, leading to more accurate and robust
depth estimation results in diverse environments.

To facilitate communication between the camera and LiDAR
sensors, we first propose generating attention maps across their
respective features, as shown in Fig. 5. Specifically, we obtain
the image feature zI and LiDAR feature zL from their feature
extractors, and then derive two corresponding attention maps:

aI = Softmax
(
(WθzI)

T (WφzI)
)
,

aL = Softmax
(
(WϕzL)

T (WδzL)
)
, (5)

where Softmax denotes the non-linear activation function, and
the family of W are learnable weight matrices to project the
original feature into an latent space.

Using above attention map and original features, we can
obtain the cross-attention depth feature map, denoted as aD.
Specifically, we first perform element-wise multiplication be-
tween the attention maps and the complementary feature, i.e.,
aI � zL and aL � zI . Then, we concatenate these two feature

Fig. 5. Workflow of the visual-LiDAR cross attention mechanism.

Fig. 6. Overview of the factor graph in LeoVR .

maps using the ⊕ operator. Hence, the depth feature output by
the cross-attention module can be formulated as:

aD = (aI � zL)⊕ (aL � zI). (6)

The efficacy of cross-attention can be ascribed to its poten-
tial to extract global correlations from diverse modalities, thus
surmounting the limitations of relying solely on local features
of a single sensor. This is particularly relevant in the context
of depth estimation tasks that necessitate inputs from both RGB
and LiDAR sensors, since the correct context for predicting pixel
depth may not necessarily be confined to adjacent locations of
current sensor features.

The cross-attention module offers efficient computation, par-
ticularly for high-level, downsampled features. The computa-
tional complexity of its pairwise computation, as described in
(5), is comparable to that of a typical convolutional layer [19].
The efficiency of the cross-attention module is further exempli-
fied in our model architecture, where it handles compact input
features with dimensions of width= 14, height= 8, and channel
= 128, as detailed in Section V-A.

C. Factor Graph Formulation

The structure of the factor graph is shown in Fig. 6. The
factor graph consists of two types of nodes: variable nodes
indicate the values to be optimized (i.e., depth maps Di, poses
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θi, and feature points P k), while factor nodes represent the
probability relationship between two variable nodes (i.e., point
factor associating pose with feature point, and depth factor
associating adjacent poses and depth maps). We optimize all
variable nodes simultaneously to obtain globally optimal results.
We describe the measurements and residuals of two types of
point factors, followed by depth factor.

1) Point Factor With Visual Reprojection Error: To opti-
mize the vehicle’s poses and feature points, we first analyze
the observation of environment by the camera. We consider a
conventional pinhole camera model with a projection function
π : SE(3)× R3 → R2, which transforms a 3D pointP in world
reference W to the image plane given a vehicle’s pose θ:

π (θ,P ) =
1

Z
KθP , P = [X,Y, Z]T , (7)

where K is the camera intrinsic matrix. Let P k ∈ R3 denote a
3D feature point and pi

k ∈ R2 denote the corresponding detec-
tion on the image plane Ii. The residual at pose θi for feature
point P k can be formulated as:

Evision(θi,P k) = π (θi,P k)− pi
k. (8)

This point factor measures the difference between the pixel
location of the observed feature point and the re-projection
location of the estimated 3D feature point due to the unknown
pose and noises of measurements. We use ORB [30] to detect
and describe visual feature points in images.

2) Point Factor With LiDAR Constraint: In order to fully
leverage the benefits of combining vision and LiDAR sensing
modalities, we further refine our feature point optimization by
utilizing LiDAR’s overlapping field-of-view to obtain depth
estimates. Specifically, we begin by projecting all 3D LiDAR
samples L in the LiDAR reference L between time tc and tc+1

onto the image plane, as follows:

π(L) =
1

Z
KL, L = [X,Y, Z]T . (9)

As the LiDAR points are sampled at different times with different
poses due to the continuous motion of the vehicle, we adopt
a widely used motion compensation technique based on linear
interpolation [31]. By projecting all in-frame LiDAR points onto
the current view, we can effectively eliminate the impact of
motion blur and enhance the alignment between LiDAR points
and visual features.

Next, given a 3D feature point P k in the world reference W

with the corresponding pixel pi
k on the current image plane, we

search for the projected LiDAR pointπ(Lk) that is closest to pi
k

within a neighborhood of 5 pixels, and apply classical outliers
rejection [32] to remove erroneous matches. Finally, the residual
is computed as follows:

Elidar(θi,P k) = θiP k −Lk. (10)

Our point factor incorporating LiDAR constraint penalizes
deviations between the depth of a feature point and its corre-
sponding LiDAR observation, optimizing both the feature points
and the vehicle’s pose while simultaneously applying scale to
visual measurements. In situations where there is insufficient

LiDAR data to associate a depth measurement with a feature
point due to sparse input LiDAR samples, we rely solely on our
Evision as the point factor.

3) Depth Factors With Geometric Consistency: To fully ex-
ploit the capabilities of the depth map from the generator and
further optimize the scene depth in a fine-grained manner, we
adopt the geometric consistency of the scene depth from dif-
ferent views as a constraint. Given two consecutive depth maps
Di and Dj , we can project Dj to the view of Di based on the
relative pose transformation T ij = θjθ

−1
i . First, let pi

k denote
the coordinates of a pixel in Di, and the corresponding 3D
location is:

P k = Di(p
i
k)K

−1pi
k. (11)

Then, we projectP k to the image plane ofDj withπ(T ij ,P k).
Therefore, we can obtain a depth map which is projected from
Dj to the view of Di:

Dj→i(p
i
k) = Dj (π (T ij ,P k)) . (12)

When the time interval between two successive frames is small, it
is expected that the geometric properties observed from different
viewpoints are consistent. Consequently, the residual between
depth maps can be formulated as:

Edepth(Di,Dj) =
∑
k∈Ω

∥∥Di(p
i
k)−Dj→i(p

i
k)
∥∥2. (13)

The depth factor plays a crucial role in ensuring the continuity
and consistency of the estimated depth maps from different
views of the scene geometry. To ensure faster convergence,
we adopt a stochastic optimization approach by sampling a
different set of pixels at each iteration to optimize the residual
over the entire depth map. Additionally, a potential limitation
associated with this factor pertains to the asynchronous sampling
of depth maps from varied viewpoints. Dynamic objects in the
scene present a particular challenge. Their states at distinct mo-
ments aren’t directly tied to the vehicle’s motion. Consequently,
when this factor is applied for their optimization, the depth
map of current frame might be influenced by inconsistent past
states. This misalignment can compromise both depth and pose
optimization, especially for rapidly moving objects. Thus, to
ensure a reliable optimization, we propose masking the incorrect
correspondences stemming from these dynamics. Specifically,
only pixels of objects within a trusted region [20] are considered
for optimization. This trusted region is defined as the convex
hull in the pixel space, formed by the consistent 3D feature
points extracted and triangulated from visual odometry on static
objects.

IV. MOTION-OPTICAL FLOW INSTRUCTED SELF-SUPERVISED

FRAMEWORK

To ease the ground truth annotation costs for training the
depth map generator, we design a self-supervised framework.
Our solution could automatically extract supervision signals to
train the DNN by leveraging the camera’s motion information.
The basic idea behind the framework is illustrated in the left
part of Fig. 7. As seen, given the current image Ii, the nearby
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Fig. 7. Workflow of the motion-optical flow instructed self-supervised framework in LeoVR .

image Ij , the depth map D̂i output from the DNN genera-
tor, as well as the inter-frame camera’s motion T ij , we can
inversely wrap Ij to the view of current image and generate
a warped image Ij→i. The pixel-level photometric differences
between the current image Ii and the warped image Ij→i could
be served as supervision signals [20]. This section details the
implementation of our basic idea (Section IV-A) in combination
with a pose quality assurance strategy for stable model training
(Section IV-B). Furthermore, we introduce a motion-optical flow
consistency constraint in Section IV-C to enhance the robustness
of our framework in complex real-world environments. We also
present two additional constraints in Section IV-D that can be
incorporated to further improve the training performance.

A. The Basic Idea: Photometric Loss

As mentioned above, the basic supervision signal for training
the depth map generator comes from the photometric consis-
tency. Let pi

k denote the pixel coordinates in image Ii, and any
pi
k with a corresponding projection in Ij can be obtained as:

pj
k = π

(
T ij , D̂i

(
pi
k

)
K−1pi

k

)
, (14)

where the motion information T ij can be obtained from our
factor graph based optimization framework, as previously dis-
cussed. Thus, the warped image Ij→i can be created as follows:

Ij→i

(
pi
k

)
= Ij〈pj

k〉, (15)

where 〈·〉 is the differentiable bilinear sampler [33] that inter-
polates around the four immediate neighbours of pj

k. Next, we
train the model to generate the depth map D̂i by minimizing
the difference between the source image Ii and warped image
Ij→i. To this end, we define the photometric loss as follows:

Lp =
∑
j∈Ni

pe (Ii, Ij→i) , (16)

where Ni is the set of image that nearby the current view. To
prevent the noise from large differences in geometric views,
only the previous and next one of the current frame are used as

reference in practical. We using a combination of the average
pixel reprojection residual with an L1 penalty and SSIM [34]
to obtain the photometric error (i.e., pe in (16)), a perceptual
metric that is invariant to local illumination changes:

pe (Ia, Ib) =
α

2
(1− SSIM (Ia, Ib))

+ (1− α) ‖Ia − Ib‖1 , (17)

where α is the parameter that regulates the sensitivity to local
illumination changes, and we setα = 0.8 to balance the training.

B. Pose Quality Assurance

The basic idea underlying the self-supervised training of
the depth map generator relies on utilizing motion information
between adjacent frames to obtain necessary supervision sig-
nals. However, inaccurate motion cues can lead to erroneous
projections as per formula (14), resulting in inaccurate signals
and impaired model training.

To minimize the relative motion estimation error among
adjacent frames within the trajectory designated for model
training, we introduce a pose quality assurance strategy. As
showcased in Fig. 8, by employing the loop-closure [35] and
incorporating pre-planned loopback data collection, we mitigate
the accumulated loop errors, ensuring a more accurate pose
transformation between neighboring frames. The strategy begins
with a Loop Detection module that identifies re-visited loca-
tions. Subsequently, feature-level connections are established
between loop candidates for Loop Validation. In the final step,
Loop Correction integrates these feature correspondences into
the factor graph as a loop-closure factor node [36], delivering
drift-free state estimates. The detailed steps of the pose quality
assurance strategy using loop-closure are as follows.

Loop Detection: For each frame within a trajectory, we eval-
uate potential loops. Using DBoW2 [37], we determine the
similarity between frame i and its co-visible neighbors based
on their bag of words vectors. A higher score signifies a greater
degree of similarity. This analysis yields a minimum similarity
score, represented as si. Subsequently, we examine the other
frames in the trajectory, discarding those with scores falling
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Fig. 8. Pose quality assurance strategy using loop-closure. (a) Trajectory prior
to loop-closure. (b) Trajectory following loop-closure. The black line depicts
the ground truth trajectory, while the gray bubbles represent the uncertainty
in the estimated poses, with larger circle indicating greater cumulative errors.
Upon loop-closure optimization, the trajectory aligns tightly with the ground
truth. This alignment augments the quality of supervision signals, drawing from
accurate motion information.

beneath si. Frames surpassing this threshold are categorized as
loop candidates. To fortify the accuracy of loop detection, we
prioritize loop candidates that appear consecutively for more
than three frames.

Loop Validation: To validate potential loops, we enhance the
assessment of similarity between frame i and its loop candidates.
We first use the ORB features to match their observations and
find the 3D-3D map points correspondence so as to compute
the Sim(3) transformation, denoted as Si. If Si supports a suf-
ficient number of inliers (i.e., the reprojection error is within an
acceptable limit), we accept this loop candidate. Subsequently,
the loop is closed by applying the similarity transformation Si

to align the frames at both ends of the loop.
Loop Correction: To correct the detected loop, we first adjust

the pose of the frame at the end of the loop using the similarity
transformation Si. This correction is then progressively applied
to all neighbors of the frame i, ensuring alignment of co-visible
observations at both ends. Subsequently, the poses of frames
along the trajectory, together with the 3D map points, are op-
timized using the factor graph as delineated in Section III-C.
Through the loop correction process, we compensate for and
mitigate the loop-closing error, ensuring an accurate alignment
of both poses and map points throughout the graph.

While this strategy integrates an additional computational
step, no discernible increase in computational costs arises during
the training phase. On one hand, loop-closure, applied before
model training, processes efficiently with an average latency of
less than 20 s per trajectory [38], [39], a stark contrast to the
demands of model training. On the other hand, the improved
pose quality notably quickens the model convergence, leading
to fewer training iterations and a consequent time-saving.

To shed light on the rationale behind the pose quality assur-
ance strategy using loop-closure, we present a concrete example
in Fig. 8. Before the loop-closure (Fig. 8(a)), the pose estimation
error gradually accumulates with vehicle motion and eventually
deviates significantly from the ground truth. However, as shown
in Fig. 8(b), after loop-closure, the estimation uncertainty of

endpoint and its neighbors is reduced. The elimination of accu-
mulated errors enhances the transformation accuracy between
adjacent frames, thereby ensuring the provision of dependable
motion information for model training. Furthermore, we provide
a quantitative evaluation in Section V-B3.

C. Motion-Optical Flow Constraint

Although one can leverage (16) to train the depth map genera-
tor from continuous video frames, the above photometric repro-
jection formulation implies the static-rigid world assumption,
where the current scene is: (i) static without moving objects; (ii)
no occlusion/disocclusion between current and nearby view; and
(iii) a Lambertian surface2 to ensure the photometric invari-
ance assumption holds [25]. However, the real environments
with high dynamics (e.g., reflections, shadows, moving objects)
hardly satisfy the above assumption, resulting in a higher penalty
and corrupted gradients even if the DNN predicts a correct depth
for each pixel, which eventually degrades the self-supervised
training performance.

To improve the robustness of self-supervised training with
photometric consistency, we propose a motion-optical flow con-
sistency constraint to select pixels that satisfy the static-rigid
world assumption for training. Our key insight is that the photo-
metric variation of ideal pixels between adjacent images should
be entirely attributed to the vehicle’s motion. This insight stems
from two observations: (i) the projection of static spatial points
across two frames can be determined by the camera’s motion
information, while for dynamic objects, their own movement
also plays a role; (ii) even for static objects, points on occluded
regions or non-Lambertian surfaces exhibit varying brightness
in their corresponding projections between two frames.

We incorporate optical flow3 to translate this insight into
practice. Given its ability to capture the motion of objects on
the image plane through photometric consistency, only those
pixels whose optical flow vector aligns with the camera’s motion
vector meet the static-rigid world assumption and are thus used
to extract supervision signals.

Specifically, to select the motion-optical flow consistent pix-
els, we first compute the optical flow vector for each pixel
between the current frame Ii and its nearby frame Ij based
on the photometric invariance assumption [42]. Thus, given a
3D spatial point with pixel coordinates pi

k in Ii, we can find the
corresponding pixelpj

k inIj according to the optical flow vector.
To ensure that the selected pixels are consistent with camera
motion, we analyze the geometric relationship between camera
motion and spatial point, as illustrated in Fig. 3. The intersection
of the optical centers Oi and Oj with the 3D point P k forms
an epipolar plane. This plane intersects with the image plane
to form two epipolar lines li and lj . Once the camera motion
is determined, the possible location of P k lies on the ray from
Oi to pi

k, and the corresponding potential projection location on

2The apparent brightness of a Lambertian surface to an observer is the same
regardless of the observer’s angle of view.

3Optical flow captures the motion of objects between consecutive frames,
representing it as a 2D vector field where each vector indicates the pixel’s
displacement from one frame to the next [41].
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Fig. 9. Qualitative results of motion-optical flow consistency constraint. We
show two complicated real-world scenarios from the KITTI dataset [40] that
severely impact self-supervised training. The first and second rows show con-
secutive RGB frames collected during the vehicle’s movement. The third row
shows the visualized dense optical flow between two frames. The last row depicts
the generated confidence masks. Pixels that lie in the darker region will be filtered
out and not be leveraged to train the DNN.

the image Ij is on lj . Thus, if pi
k is consistent with the camera

motion, pj
k calculated by optical flow should lie on lj . We can

verify the consistency using the epipolar constraint [43] that
evaluates the distance from the projection point to the epipolar
line, given by:

(pj
k)

T
Fpi

k = 0, (18)

where the fundamental matrix F can be calculated from the
camera motion [44]. The above equation holds strictly when the
optical flow is completely consistent with the motion. Based
on this constraint, we compute confidence mask μ for loss
Lp, which filters out pixels that violate motion-optical flow
consistency:

μ =
[ ∣∣(pj

k)
T
Fpi

k

∣∣ < λ
]
, (19)

where [·] is the Iverson bracket, and λ is the constraint threshold.
As shown in Fig. 9, we qualitatively demonstrate the effective-
ness of motion-optical flow consistency constraint. In both com-
plicated scenes, the generated per-pixel confidence mask can
accurately filter the invalid pixels from occlusion, dynamics, and
non-Lambertian surfaces. We also experimentally show that the
proposed constraint can solve these factors and bring significant
improvements for the self-supervised training (Section V-D2).

D. Additional Constraints

In addition to the vehicle (i.e., camera’s) motion information,
we also take full advantage of the output of the optimization
framework (Section III-C), including the optimized 3D feature
points and refined depth maps. Further, we introduce two ad-
ditional constraints to facilitate the training of the depth map

generator. The training performance gain will be demonstrated
in Section V-D3.

Feature Points Constraint: As described in Section III, in
addition to optimizing the depth maps and poses, we also track
all 3D feature points in the global trajectory. We project the
feature points which are visible in the current frame Ii onto the
image plane and form a sparse depth mapDf

i . The feature points
supervised depth loss is defined as:

Lf =
∥∥∥(D̂i −Df

i

)
�
[
Df

i > 0
]∥∥∥2 , (20)

where � is an element-wise multiplication. Since Df
i is sparse

and contains invalid pixels, we only consider those are hav-
ing valid depth values. This supervision signal delivers higher
accuracy, better stability, and faster convergence during model
initialization for self-supervised training.

Refined Depth Guidance: In the refinement stage of model
training, the factor graph based optimization refines each depth
map predicted by the generator. With the guidance from the
refined depth Dr

i , the loss is defined as follows:

Lr =
∥∥D̂i −Dr

i

∥∥2. (21)

In practice, introducing Lr in the fine-tuning stage can effec-
tively improve the accuracy, but still a small number of incorrect
refined depth maps can cause model training instability. For
stable training, we only select those refined depth maps that are
geometrically consistent with the optimized feature point cloud
for further guidance.

E. Put Together

For the smoothness of generated depth maps, we further use
edge-aware smoothness loss Ls to minimize the L1 norm of the
second-order gradient for the depth prediction, and the form of
Ls is similar to [5], [20]. Putting these constraints together, our
final objective for the entire self-supervised training is:

L = μLp + λfLf + λrLr + λsLs, (22)

where λf , λs, and λr are the relative weightings to balance the
terms. We will describe the training details in Section V-A.

V. IMPLEMENTATION AND EVALUATION

A. Experimental Methodology

Device Setup: We prototype LeoVR on a robotic testbed (in-
door experimental scenarios) and commercial vehicle (outdoor
scenarios) with different cameras and LiDARs. The robot and
vehicle are equipped with a Logitech C920E (1080p, 30 Hz)
and Ladybug5+ (2 k, 30 Hz) RGB camera for capturing im-
ages respectively. We also equip both VLP-16 ($4,000) and
Mid-40 ($500) LiDARs on each device to compare LeoVR
with related works under different LiDAR settings. As shown in
Fig. 10, Mid-40 is a solid-state LiDAR with Risley prism that
adopts non-repetitive scanning (rosette-like scanning pattern),
and the scanning trajectory never repeats. Mid-40 has a front
facing, conical shaped, 38.4 ◦ FoV with a sampling rate of
100,000 points/s [31]. VLP-16 is a conventional mechanical
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TABLE II
DETAILS OF DATA COLLECTION IN DIFFERENT SCENARIOS

Fig. 10. The scanning principles and basic specifications of Mid-40 and VLP-
16 LiDARs.

spinning LiDAR, which rotates 16 uniformly distributed lasers
simultaneously for scanning with a rotation frequency of 5-
20 Hz. VLP-16 has a 360 ◦ horizontal and 30 ◦ vertical FoV with
a sampling rate of 300,000 points/s [45]. In brief, for the same
detection area, VLP-16 can acquire denser point clouds with
higher FoV coverage at a faster rate (the FoV coverage of Mid-40
is 20% in 0.1s [46]). For the optimization module of LeoVR , the
server is equipped with Intel(R) Xeon(R) CPU E5-2620 v4 of
2.10 GHz main frequency and 256 G RAM, running the Ubuntu
18.0.4 operating system. For the model training and inference,
the GPUs we use are two GeForce RTX 2080ti with CUDA
version 10.1 and cuDNN v7.6.2.

Metrics and Ground Truth: For each generated depth map,
we use the Mean Absolute depth Error (MAE) of all pixels in
the image to measure the depth estimation performance, which
is a golden indicator adopted by related works [1], [2]. To obtain
the ground truth, we use a high-precision LiDAR (an 80-lines
RoboSense Ruby Lite with $15,800) to run a LiDAR-based
environmental mapping algorithm (LOAM [47]) to generate
dense depth maps.

Dataset: We generated a dataset using the collected RGB
images and LiDAR samples for further analysis, as summa-
rized in Table II. The dataset includes 3,720 trajectories over
a period of 8 months, comprising 1,126,550 frames. Roughly
30% of the trajectories contain loops, enabling us to evaluate
the effectiveness of our pose quality assurance strategy. We
conduct experiments in four representative scenarios: city road
and campus as outdoor scenarios, while classroom building and
office building as indoor scenarios. These scenes enjoy diverse
spatial geometric layouts and environmental dynamics and thus
provide different challenges for environment depth estimation.
In the classroom and office buildings, there is only a small
amount of pedestrian dynamic interference, the scene geometry

is regular, and the distance between the target object and the
sensing device is close. However, in the city road and campus,
there are many moving vehicles and a variety of target objects
(e.g., buildings, pedestrians, vegetation, road signs), and the
perceived distance is relatively long compared to the indoor
environment. The dataset of city road contains an extra four
times the frames for model training and further analysis of the
impact of training data number on the self-supervised training
(Section V-E2). In our experiments, different models are trained
for different scenarios. The training and evaluation data are
taken from different regions in the same scenario, rather than
uniformly extracted from the dataset, which helps to verify the
generalizability of the model.

Comparative Methods: To extensively evaluate the perfor-
mance of LeoVR , we additionally implement 4 state-of-the-art
approaches based on visual-LiDAR fusion for comparison. We
evaluate the depth estimation performance of LeoVR with:
DeepLiDAR and DenseLiDAR, two SOTA learning-based depth
estimation model. Specifically, when comparing LeoVR with
these two works, we train the depth map generators of them and
our LeoVR on the annotated dataset in advance. Furthermore,
to evaluate the effectiveness of the proposed self-supervised
framework, we compare LeoVR with another two existing
self-supervised training based systems, Self-S2D and Self-VLO.
In this part of experiments, without complex pre-training, the
depth map generators in these systems and LeoVR cold start by
self-supervised training.

Model Architectures & Training Details: The architecture of
the depth map generator is depicted in Fig. 4. Input images
are cropped to a resolution of 448x256 pixels. The encoder
is constructed using ResNet-34 [48], with each layer having a
stride of 2 for downsampling. Following each encoding layer, the
number of channels in the feature map is [16, 32, 64, 128, 128]
for both the RGB image branch and the LiDAR points branch.
Batch normalization [49] and ReLU activation are applied to
all layers except for the last one. The Adam optimizer [50] is
employed with β1 = 0.9 and β2 = 0.999, and a batch size of 8
is used to train the model for 24 epochs. The initial learning
rate is set to 10−4 and is halved every 6 epochs. Empirical
hyper-parameters are set as follows: λf = 0.4, λr = 0.1, and
λs = 0.2.

Our self-supervised training process involves two distinct
stages, each with specific training protocols that rely on the mo-
tion information and geometric structure constraints provided by
the factor graph. The first stage, called the initialization stage
(first 18 epochs), relies solely on the point factor in the factor
graph to gather motion information. During this stage, we do
not use refined depth guidance (as explained in Section IV-D).
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Fig. 11. Generated depth maps from LeoVR . From top to bottom are examples
from city road, campus, classroom, and office building scenarios, respectively.

In contrast, the second stage, called the refinement stage (last
6 epochs), employs the full factor nodes and complete training
constraints to progressively enhance the depth map refinement
ability. To achieve this, we update the confidence mask and
supervision signals provided by the factor graph every two
epochs. Additionally, we implement the pose quality assurance
strategy for each loop trajectory (Section IV-B) throughout the
entire training process to ensure the reliability of self-supervised
training.

B. Overall Performance

1) Depth Estimation Performance: We first evaluate the
depth estimation performance of LeoVR as well as the above
two comparative systems in different scenarios with a Livox
Mid-40 LiDAR. As depicted in Fig. 12(a), LeoVR achieves
the optimal performance in all scenarios with different envi-
ronmental complexity. Specifically, LeoVR achieves estimation
accuracies of 0.173 m, 0.134 m, 0.052 m, and 0.047 m in the city
road, campus, classroom building, and office building scenarios,
respectively, outperforming DenseLiDAR and DeepLiDAR by
more than 45.9% and 57.8%. Qualitative results of LeoVR in
different scenarios are shown in Fig. 11. It can be observed that
the generated depth maps are capable of profiling the details of
objects and are comparable to the ground truth. Compared to
the raw LiDAR points, the depth maps provide a more complete
and intuitive representation of the environment.

We further evaluate the performance of LeoVR and compar-
ative systems on the city road dataset with two different types
of LiDAR. As shown in Fig. 12(b), the MAE of LeoVR with
Velodyne VLP-16 and Livox Mid-40 is 0.141 m and 0.173
m respectively, representing a > 25.7% and 45.9% reduction
compared to existing works. The results demonstrate that LeoVR
consistently brings significant performance gains when using

TABLE III
REAL-TIME TRACKING PERFORMANCE COMPARISON

different types of LiDAR, especially for the commercial yet
sparsely sampled Mid-40. In the case of sparser 3D LiDAR
point cloud, LeoVR leverages the vehicle’s motion information
to provide additional spatio-temporal constraints among those
continuously generated depth maps, which would further opti-
mize the depth prediction accuracy. We will further demonstrate
the effectiveness of the proposed motion-aware optimization
framework in Section V-D1.

2) Self-Supervised Performance: We also conduct exper-
iments to evaluate the performance of the proposed self-
supervised framework. In this evaluation, LeoVR and two com-
parative self-supervised systems, Self-VLO and Self-S2D, are
equipped with the Mid-40 LiDAR and cold start in different sce-
narios without pre-training. For each dataset, as described in Ta-
ble II, we leverage partial trajectories for self-supervised training
and use the remaining trajectories to evaluate the MAE of each
system. The results are shown in Fig. 12(c). As seen, the depth
estimation performance of the self-supervised LeoVR is 0.201
m, 0.158 m, 0.063 m, 0.055 m in four different scenarios re-
spectively, which decrease by 13.9%, 15.1%, 17.4%, and 14.5%
compared to that of the supervised version. Meanwhile, the
self-supervised LeoVR outperforms comparative approaches by
> 47.8%. Especially in the city road scenario where the envi-
ronment suffers from the most dynamics, LeoVR outperforms
existing works by 56.5%. The impressive results demonstrate
that the motion-optical flow-instructed self-supervised frame-
work could boost the model training performance, especially in
complex real-world environments. A detailed understanding of
the contribution from each constraint (i.e., supervision signals)
will be presented in Section V-D3.

3) Motion Tracking Performance: The effective utilization
of vehicle motion information is a key factor in LeoVR achiev-
ing outstanding depth estimation and self-supervised training
performance. Therefore, the ability to accurately track vehicle
motion (i.e., 6-DoF pose) is the basis of the entire system. In
this experiment, we evaluate the system’s tracking performance
during both the online and the offline phases. While the online
phase involves real-time data acquisition for pose and depth
estimations, the offline phase utilizes pre-acquired trajectory
data to estimate pose, further enhancing the model training.

We conduct this experiment with Livox Mid-40, and the
ground truth is obtained through LOAM leveraging the 80-line
RoboSense Ruby Lite LiDAR. We use the absolute trajectory
error (ATE [51], in cm) to evaluate the motion tracking ac-
curacy. As illustrated in Table III, during the online phase,
LeoVR is benchmarked against V-LOAM [52] across various
scenarios. LeoVR consistently achieves an ATE of less than
4.1 cm in all scenarios, surpassing V-LOAM by 19.6%. This
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Fig. 12. Overall depth estimation performance comparison.

Fig. 13. System robustness evaluation.

TABLE IV
COMPARISON OF POSE QUALITY FOR MODEL TRAINING

boost is attributed to the factor graph optimization, particularly
with the introduction of depth factor. During the offline phase,
we evaluate the improvements in pose estimation attributed to
loop-closure, as detailed in Table IV. For training trajectories
with loop closures, our pose assurance strategy adeptly leverages
global information, resulting in a notable enhancement in pose
accuracy. Compared with the approach without loop-closure, the
error drops by at least 60%, ensuring reliable self-supervised
training signals. While this strategy necessitates collecting tra-
jectories with loop closures, our empirical observations indicate
no significant additional overhead in data collection.

C. System Robustness Evaluation

In this part, we analyze the system’s robustness in the most
challenging city road using commercial autonomous vehicles
equipped with Livox Mid-40.

1) Impact of Scene Distance: We examine the impact of
scene distances on the depth estimation task. We divide the
frame into five parts according to the distance from objects
to the camera and separately calculate the MAE for each part.
As shown in Fig. 13(a), the accuracy of estimation gradually
decreases as the scene distance increases. Specifically, the MAEs

are 0.09 m, 0.11 m, 0.14 m, and 0.18 m for the distances of 0-20
m, 20-40 m, 40-60 m, and 60-80 m, respectively. When the scene
distance exceeds 80 m, the average error increases to 0.31 m,
which can be attributed to the decrease in accuracy and density
of the point cloud with increasing sensing distance. Nonetheless,
our proposed method is capable of achieving a 95th percentile
error below 0.36 m within the 80 m range.

2) Impact of Vehicle Speed: We further verify the robustness
of LeoVR on different speeds of the vehicle. As depicted in
Fig. 13(b), for speeds less than 20 km/h, LeoVR ’s performance
remains stable, with an average depth error of 0.18 m. When
the moving speed = 0 km/h, the final optimization result can be
considered as an average of the continuous depth maps within
the sliding window, which are supposed to be consistent since
the camera is stationary. As a reminder, the sampling area of
Mid-40 varies from cycle to cycle, even when stationary, and
the depth maps generated by the model are not identical. At
speeds above 40 km/h, LeoVR achieves an average depth error
of 0.27 m and a 95th percentile error of less than 0.59 m. The
main reasons for the degradation are as follows: (i) The sampling
circle of LiDAR is long and the vehicle is fast, resulting in an
inherent bias when accumulating sampling points; and (ii) the
view of adjacent frames at high speed differs greatly, posing a
challenge for matching visual feature points.

3) Impact of Environmental Dynamics: As discussed in
Section III-C3, dynamic objects within the scene can potentially
degrade the depth map optimization. To understand the system’s
robustness against such challenges, we conduct evaluations
across varying levels of scene dynamics, including static (scenes
without moving entities), slight dynamic (scenes with occa-
sional pedestrians and vehicles), and severe dynamic (scenes
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Fig. 14. Ablation study.

TABLE V
IMPACT OF LIGHTING CONDITIONS

characterized by fast moving objects). As shown in Fig. 13(c),
the average depth estimation errors are 0.162 m, 0.176 m, and
0.204 m in static, slight dynamic, and severe dynamic scenes,
respectively. This represents a 7.9% improvement in error from
static to slightly dynamic scenes and a 20.5% improvement
in error from static to severely dynamic scenes. Further, when
examining the 95th percentile of errors, the values are 0.37 m,
0.39 m, and 0.45 m for the static, slight dynamic, and severe dy-
namic scenes, respectively. These results highlight the system’s
ability to consistently limit substantial depth estimation errors,
regardless of scene dynamics, attesting to the robustness of the
employed optimization strategies.

4) Impact of Lighting Conditions: Both visual camera and
LiDAR are sensitive to lighting conditions, making it a piv-
otal factor in the robustness of LeoVR . We evaluate LeoVR
’s performance under three distinct lighting scenarios: normal
illumination, refraction (induced by materials like glass and
metal), and dark (nighttime scenes with sparse lighting). As
shown in Table V, without the cross-attention module, the depth
estimation error in refractive scenes increases by 25.1% due to
LiDAR’s inaccurate ranging. Similarly, in dark scenes, visual in-
sensitivity leads to a 31.8% rise in error compared to normal con-
ditions. However, when integrating the cross-attention module,
the errors in refraction and dark scenes decrease by 16.4% and
19.5%, respectively, compared to the errors observed without the
cross-attention module. Compared to traditional convolutional
structures, cross-attention excels in fusing the strengths of both
modalities and leveraging non-local correlations to overcome
challenging scenarios, thereby enhancing the robustness of the
system.

D. Ablation Study

We then conduct an ablation study to understand the effec-
tiveness of some modules in LeoVR .

1) Effectiveness of the Motion-Aware Optimization: In this
experiment, we compare the depth estimation performance with-
out (w/o) and with (w/) the proposed motion-aware learning-
embedded optimization framework to show the performance
gains it brings into the overall system. When we close the
optimization framework, the depth map output by the system
is entirely generated by the self-supervised DNN. The exper-
imental results are shown in Fig. 14(a). As seen, with our
optimization framework, the system achieves an enhanced per-
formance, where both MAE and variance of the depth estimation
significantly decrease. Specifically, the MAE of LeoVR with
the optimization framework is 0.201 m, 0.158 m, 0.063 m,
and 0.055 m in city road, campus, classroom building, and
office building, respectively, which represents a reduction of
over 31.2% compared to LeoVR without optimization. These
findings demonstrate the effectiveness of the motion-aware
optimization framework in improving the accuracy of depth
estimation in various settings.

2) Effectiveness of the Motion-Optical Flow Constraint: To
demonstrate the effectiveness of motion-optical flow consis-
tency constraint in the proposed self-supervised learning frame-
work, we evaluate the model training performance on four
different datasets with and without the confidence masks gen-
erated upon the motion-optical flow consistency through (19).
The results are shown in Fig. 14(b). The proposed training
method with confidence masks improves the depth estima-
tion accuracy by 17.6% and 13.2% for the classroom building
and office building scenarios, respectively. For the city road
and campus scenarios, the performance is increased by 22.7%
and 21.1%, respectively. The two outdoor scenarios are more
complicated and dynamic, where the rigid-static world assump-
tion would be violated frequently. The motion-optical flow
constraint could be leveraged to select stable and consistent
pixels among adjacent frames to generate supervision signals,
resulting in a training performance lift, especially in dynamic
environments.

3) Effectiveness of Additional Constraints: We evaluate the
effectiveness of our additionally proposed feature points con-
straint and refined depth guidance for self-supervised training.
In this experiment, we take the self-supervised model trained by
the basic photometric loss and motion-optical flow constraint as
a baseline and introduce these two additional constraints into
the framework individually. We focus on the performance gains
each of them brings to LeoVR . As shown in Fig. 14(c), the
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TABLE VI
DEPTH MAP GENERATOR PERFORMANCE IMPROVEMENT

MAE decreases by 7.8% when the feature points constraint
is added on top of the baseline. Similarly, the introduction of
refined depth guidance leads to a 6.5% improvement in depth
estimation performance. These results demonstrate that the ad-
ditional constraints can provide useful supervision signals for
training the DNN, resulting in improved performance.

4) Depth Map Generator Performance Improvement: In this
work, we build upon the [28] model and propose two strategies
to enhance the robustness of the depth map generator: (i) a
cross-attention mechanism to improve the complementary abil-
ity between the visual and LiDAR modalities, and (ii) a loop-
closure based pose quality assurance strategy utilizing global
motion information to ensure the reliability of self-supervised
training. In this experiment, we first assess the individual and
combined enhancements these techniques bring to the model.
Subsequently, we analyze their systemic impact, especially in
terms of gains post factor-graph optimization.

As detailed in Table VI, the cross-attention and loop-closure
techniques independently reduce the average error by 2.8% and
5.4% in the city road scenario, respectively. When combined,
they yield a cumulative improvement of 7.6%. Furthermore, in
contrast to the baseline’s 95th percentile error of 97.2 cm, the
cross-attention and loop-closure strategies enhance performance
by 21.3% and 11.4%, respectively. Their joint application results
in a 26.1% uplift, underscoring their efficacy in constraining
larger errors. From a holistic system perspective, their incor-
poration elevates LeoVR ’s average accuracy by 6.2%, while
diminishing the 95thpercentile error by 17.5%. Considering that
the model’s depth map output is subject to joint optimization,
the enhancements of LeoVR from these techniques are slightly
diminished. Nonetheless, their effectiveness in enhancing model
robustness remains evident.

It is noteworthy that the integration of these strategies for en-
hanced robustness doesn’t compromise the end-to-end latency.
On one hand, the loop-closure strategy is exclusively employed
during the offline phase for model training. On the other hand, by
producing high-precision depth maps, LeoVR necessitates fewer
iterations in subsequent optimizations, effectively shortening the
overall latency (Section V-F).

E. Parameter Study

We conduct a parameter study to understand the impact of the
selection of some critical parameters on the system performance.

Fig. 15. Impact of sliding window.

Fig. 16. Impact of training data.

1) Impact of Sliding Window Length: As aforementioned,
LeoVR uses a set of frames within a sliding window to op-
timize the depth map using the factor-graph. We evaluate the
impact of the sliding window length on the accuracy and la-
tency, and the results. As depicted in Fig. 15, when using
only two adjacent frames, the depth estimation error is 0.275
m with a 18 ms optimization delay. With the window length
increasing to 4 frames, the error decreases by 27.3%, and the
optimization latency increases to 24 ms. However, continuously
increasing the window length beyond 4 frames will not im-
prove the accuracy of LeoVR because there will be a large
gap in the FoV among these frames. To balance the accu-
racy and latency, we use a sliding window length of 4 frames
in LeoVR .

2) Impact of Training Data Amount: The self-supervised
training framework in LeoVR allows the DNN model (i.e., the
depth map generator) to be trained by unlabeled data, however,
the model training effectiveness is inevitably sensitive to the
amount of the training data. We further evaluate the impact of
training data amount on the performance of LeoVR with and
without (i.e., merely using the DNN model) the optimization
framework in the city road dataset. As shown in Fig. 16, the av-
erage estimation error of LeoVR with and without optimization
are 0.291 m and 0.201 m trained with 160 k frames using self-
supervised learning. When the training data number decreased
to 50 k, the error scale up to 0.387 m and 0.226 m, respectively.
The performance degradation of LeoVR without optimization
is 24.8%, while the entire LeoVR is only 11.1%. The above
results demonstrate that although the self-supervised training
performance degrades with limited training data, the subsequent
optimization scheme could still maintain the estimation accu-
racy.
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Fig. 17. System efficiency.

F. Efficiency Study

As a depth estimation system towards auto-driving scenar-
ios, we further evaluate the efficiency of LeoVR . As shown
in Fig. 17, we measure the end-to-end latency of four depth
estimation systems. Note that unlike existing DNN standalone
approaches, LeoVR involves both a DNN and a joint opti-
mization scheme. Therefore, we separately report the latency
of these two modules in LeoVR . The end-to-end latency of
LeoVR , DenseLiDAR, DeepLiDAR, and Self-S2D are 53 ms,
42 ms, 55 ms, and 87 ms, respectively. The latency of the DNN
and the optimization scheme in LeoVR are 29 ms and 24 ms,
respectively. Overall, LeoVR can operate with a frequency of
18 Hz, which is in line with the LiDAR sampling frequency
(e.g., VLP-16, 5-20 Hz).

Compared to previous version [28], LeoVR achieves improve-
ments in both model inference and optimization speeds. First, the
integration of cross-attention, coupled with a streamlined model
architecture, as detailed in Section V-A, accelerates the model
inference. Second, the strategies aimed at fortifying model
robustness result in more accurate initial depth maps, leading
to faster convergence in subsequent optimization with reduced
iterations.

G. Case Study: Depth Completion With RGB-D Camera

RGB-D camera is commonly used for capturing depth in-
formation in indoor environments. However, one of the major
challenges with this sensor is the presence of detection holes
in depth maps, arising from reflections, refractions, and black
absorbing surfaces [53]. Filling these holes is a complex task
for models, and obtaining ground truth data for training can be
a challenging endeavor.

This case study investigates the application of our motion-
inspired multi-modal fusion method for depth completion in
indoor environments using RGB-D camera. While LeoVR
is primarily designed for autonomous driving scenarios, we
demonstrate its seamless adaptation to indoor environments.
Specifically, LeoVR take RGB image and raw depth data, both
cropped to a resolution of 360*480 pixels, as the inputs, while
incorporating motion information from the RGB-D camera to
enhance self-supervised training and depth optimization. As a
result, LeoVR generates accurate and complete indoor depth
maps that capture the structural details of the environment.

Experimental Setup: For data acquisition in our experiments,
we used a Microsoft Kinect to capture RGB images and depth

Fig. 18. Depth map generated by LeoVR with RGB-D camera. From left to
right, RGB image and raw depth captured by Kinect, and the complete depth
map generated by LeoVR . In depth maps, black represents detection holes,
warm colors represent distant objects, and cool colors represent close objects.

maps simultaneously. We conducted the data collection process
in diverse indoor environments, including classrooms and of-
fices, and gathered a continuous stream of 209,180 frames to
train our models. Additionally, a separate dataset consisting of
1,800 frames was obtained from a student activity center, with
frames captured continuously at a rate of 30 Hz over a period
of one minute, specifically for qualitative analysis. It should be
noted that quantitative evaluation and comparison with other
methods were not conducted in this case study due to the lack
of specialized equipment or established strategies for obtaining
ground truth data. Additionally, our training procedure relied
solely on self-supervised learning without the use of manually
annotated datasets.

Performance Evaluation: As shown in Fig. 18, we present a
qualitative result of LeoVR in the student activity center. The
raw depth map collected by Kinect contains numerous detection
holes, with 20.1% of the pixels affected by factors of refraction
and color absorption. However, by utilizing the RGB image and
mobility of the device, LeoVR is able to generate a complete and
visually plausible depth map. The improved performance can
be attributed to LeoVR can exploit geometric cues in the RGB
image to complete the missing depth information, as well as
the ability to optimize observations from multiple perspectives
using motion information. In this case study, to achieve better
multi-view optimization results, a sliding window of length 12
was used given the relatively slow movement speed of the hand-
held Kinect device.

Limitations: Despite the promising results, we note that there
are still limitations to LeoVR . In particular, we found that
our model struggles to accurately estimate depth in challenging
scenarios such as scenes with glass windows (e.g., the estimated
distance is greater than the actual distance, as shown in the
dark-red region of Fig. 18 - LeoVR ). In these situations, the
performance of both the RGB and depth sensors is compromised
due to glass refraction and glare from sunlight. Furthermore, our
motion-optical flow constraint strategy filters out these types of
interference during model training, making it difficult to handle
such out-of-distribution scenarios. Addressing these challenges
will be a focus of our future work, by further leveraging semantic
information from vision.

VI. DISCUSSION AND FUTURE WORK

LeoVR is an early step towards ubiquitous environmental
depth estimation by fusing camera and low-cost LiDAR. We
briefly discuss limitations and future works in this section.
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Degraded performance in adverse weather: Both of conven-
tional LiDAR and camera are sensitive to weather conditions
and are not expected to work fully in adverse weather like fog,
making the perception results unreliable [29]. Aside from lidar
and camera, radar has been widely deployed on autonomous
vehicles. Specifically, radar uses millimeter-wave signals whose
wavelength is much larger than the tiny particles forming fog,
rain, and snow, and hence easily penetrates or diffracts around
them [54]. We think integrating mmWave radar into LeoVR
would greatly enhance the robustness of system in harsh weather.

Additional latency for optimization: The learning-embedded
optimization scheme of LeoVR pushes the limits of the depth
estimation accuracy, however, the fine-grained optimization also
introduces additional computational delay. Optimizing the com-
putational overhead required by the algorithm [55], or offloading
some computation-intensive yet delay-tolerant tasks to an edge
server [56] is also a promising research direction.

Adaptation in high-speed scenarios: As the vehicle speed
increases, the LiDAR point clouds generated by Mid-40 as well
as visual features also suffer from obvious motion blur [31], [57]
due to their hardware nature, resulting in LeoVR not capable of
handling high-speed scenarios (e.g., vehicle speed > 40 km/h).
We think introducing IMU [58] or wheel odometry [59] into the
optimization framework to provide a high frequency ego-motion
estimation could help to tackle the above challenge, which is left
as future works.

Visual Semantic Guidance: Incorporating the visual modality
has undoubtedly assisted in the restoration of missing pixels in
the depth map. However, the presence of shadows, reflections,
and refractions in the visual image may cause irregularities in
pixel values, which can compromise the model training and
introduce biases in the depth optimization process. Incorporating
a semantic understanding of the environment can be instrumental
in overcoming these challenging scenarios. Therefore, utilizing
semantic segmentation networks [60], [61], [62] to guide the
generation of depth maps is a promising direction for future
research.

VII. RELATED WORK

Optimization-based Visual-Radar fusion: In recent years, the
fusion of multi-modal sensors, especially leveraging vision or
radar, has attracted a wide range of attention from both industry
and academia [32], [52], [63], [64], [65], [66]. Among them, RF-
Fusion [65] fuses vision and RFID to enable robots to recognize
objects. ITrackU [67] leverages IMU and UWB radar for track-
ing a pen-like instrument. V-LOAM [52] integrates vision and
LiDAR in a loosely coupled manner to track a camera’s motion
and generate environmental 3D point clouds. VILENS [58] and
FollowUpAR [68] utilize a factor graph to tightly integrate vision
and laser or mmWave radar features for real-time object point
cloud registration. However, all of the above optimization-based
approaches could merely generate object- or surface-level sparse
point clouds instead of pixel-level depth maps of surrounding
environments. Some recent works [32] rely on an expensive
LiDAR to sample dense point clouds, limiting their deployment

on commercial devices. In contrast, LeoVR could achieve dense
depth map generation with low-cost LiDAR.

Learning-based visual-LiDAR fusion for depth estimation:
In recent years, deep learning has enabled environmental per-
ception for IoT devices [69], [70], [71], [72]. Some notable
works [17], [18], [23] have designed learning-based frameworks
to fuse visual and LiDAR data for environment depth estima-
tion. To instruct the higher-level network to generate a more
accurate depth map, recent works such as DeepLiDAR [2] and
DenseLiDAR [1] have utilized pseudo-depth maps obtained
from morphological operations. However, the performance of
these solutions highly depends on the density of the LiDAR
point clouds and suffers from severe degradation when equipped
with commercial in-vehicle LiDARs. To improve prediction ca-
pability, previous works such as [73] and [53] have incorporated
self-attention modules [19] into their networks to capture the
correlation between the scene and object elements. In contrast,
our proposed LeoVR model employs a cross-modal attention
mechanism that further focuses on non-local dependent features
between modalities, enhancing sensor fusion efficiency.

Self-supervised depth estimation: Most existing works on
depth map estimation rely on densely annotated ground truth
for model training, which burdens these systems for widespread
deployment. Recently, some self-supervised solutions have been
proposed [5], [20], [25], [74]. For instance, Self-S2D [20] takes
a sequence of images with depth maps as inputs and uses
Perspective-n-Point to align them for photometric consistency.
[25] proposes an unsupervised learning framework for monocu-
lar depth and camera motion estimation from unstructured video
sequences. However, these methods suffer from degraded perfor-
mance in practical scenarios, with noisy pixels (dynamic objects,
occlusion, and non-Lambertian surfaces) and unguaranteed pose
quality being the main culprits. To address these limitations,
LeoVR , leverages the motion information of the vehicle to
extract robust supervision signals in complex environments.
Additionally, we introduce the loop-closure strategy for guaran-
teeing the pose quality of self-supervised training data. Although
loop-closure [75], [76] is a well-established global trajectory
optimization technique in the SLAM field [35], [39], our work
represents the first application of this approach to the quality
assurance of self-supervised signals in depth map generation.
In comparison to existing works, our approach demonstrates
superior performance in challenging scenarios, highlighting the
efficacy of incorporating motion information and pose quality
assurance in self-supervised depth estimation.

VIII. CONCLUSION

We have presented the design and implementation of LeoVR,
a self-supervised environment depth estimation system with
visual-LiDAR fusion. LeoVR takes fully advantages of the
vehicle’s motion information and designs (i) a motion-aware
learning-embedded optimization scheme for generating accurate
environmental depth maps even with low-cost LiDARs; and
(ii) a motion-optical flow instructed self-supervised framework
that enables self-supervised training of the DNN. We implement
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LeoVR on a robotic testbed and commercial vehicles, conduct-
ing extensive experiments in real environments across 8 months.
The results demonstrate its superior performance over previous
schemes in all scenarios with different types of LiDAR, promis-
ing adaptability for future LiDAR with different specifications.
Being fully self-supervised and achieving an accurate depth
estimation performance, LeoVR makes a great process towards
fortifying environmental perception to an essential capability for
large-scale on-vehicle deployment.

REFERENCES

[1] J. Gu, Z. Xiang, Y. Ye, and L. Wang, “DenseLiDAR: A real-time pseudo
dense depth guided depth completion network,” IEEE Robot. Automat.
Lett., vol. 6, no. 2, pp. 1808–1815, Apr. 2021.

[2] J. Qiu et al., “DeepLiDAR: Deep surface normal guided depth predic-
tion for outdoor scene from sparse LiDAR data and single color im-
age,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 3308–3317.

[3] Y. Chen, B. Yang, M. Liang, and R. Urtasun, “Learning joint 2d-3D
representations for depth completion,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 10023–10032.

[4] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal
regression network for monocular depth estimation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2002–2011.

[5] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth estimation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 3827–3837.

[6] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “DeepFactors:
Real-time probabilistic dense monocular SLAM,” IEEE Robot. Automat.
Lett., vol. 5, no. 2, pp. 721–728, Apr. 2020.

[7] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Pseudo-LiDAR from visual depth estimation: Bridging the
gap in 3D object detection for autonomous driving,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 8437–8445.

[8] F. Xue, G. Zhuo, Z. Huang, W. Fu, Z. Wu, and M. H. Ang, “Toward
hierarchical self-supervised monocular absolute depth estimation for au-
tonomous driving applications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2020, pp. 2330–2337.

[9] Y. He, L. Ma, Z. Jiang, Y. Tang, and G. Xing, “VI-eye: Semantic-
based 3D point cloud registration for infrastructure-assisted autonomous
driving,” in Proc. 27th Annu. Int. Conf. Mobile Comput. Netw., 2021,
pp. 573–586.

[10] L. Teixeira, M. R. Oswald, M. Pollefeys, and M. Chli, “Aerial single-view
depth completion with image-guided uncertainty estimation,” IEEE Robot.
Automat. Lett., vol. 5, no. 2, pp. 1055–1062, Apr. 2020.

[11] C. Häne, C. Zach, J. Lim, A. Ranganathan, and M. Pollefeys, “Stereo
depth map fusion for robot navigation,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2011, pp. 1618–1625.

[12] S. Izadi et al., “Kinectfusion: Real-time 3D reconstruction and interaction
using a moving depth camera,” in Proc. 24th Annu. ACM Symp. User
Interface Softw. Technol., 2011, pp. 559–568.

[13] “A reminder that tesla’s autopilot still requires a pilot,” 2020. [On-
line]. Available: https://www.motortrend.com/news/tesla-model-3-crash-
taiwan-autopilot-accident/

[14] “Self-driving car systems were involved in 400 crashes since 2021,” 2022.
[Online]. Available: https://news.yahoo.com/self-driving-car-systems-
were-142925251.html

[15] J. Wang, L. Zhang, Y. Huang, and J. Zhao, “Safety of autonomous vehi-
cles,” J. Adv. Transp., pp. 1–13, 2020.

[16] Z. Yin and J. Shi, “GeoNet: Unsupervised learning of dense depth, optical
flow and camera pose,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 1983–1992.

[17] M. Hu, S. Wang, B. Li, S. Ning, L. Fan, and X. Gong, “PENet: Towards
precise and efficient image guided depth completion,” IEEE Int. Conf.
Robot. Automat., 2021, pp. 13656–13662.

[18] S. Zhao, M. Gong, H. Fu, and D. Tao, “Adaptive context-aware multi-
modal network for depth completion,” IEEE Trans. Image Process.,
vol. 30, pp. 5264–5276, 2021.

[19] J. Park, K. Joo, Z. Hu, C.-K. Liu, and I. S. Kweon, “Non-local spatial
propagation network for depth completion,” in Proc. Comput. Vis. 16th
Eur. Conf., 2020, pp. 120–136.

[20] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-to-
dense: Self-supervised depth completion from LiDAR and monocular
camera,” in Proc. IEEE Int. Conf. Robot. Automat., 2019, pp. 3288–3295.

[21] “Velodyne,” 2021. [Online]. Available: https://velodynelidar.com/
products/

[22] “Livox,” 2021. [Online]. Available: https://www.livoxtech.com/
application/autonomous-driving

[23] B. Li, M. Hu, S. Wang, L. Wang, and X. Gong, “Self-supervised visual-
LiDAR odometry with flip consistency,” in Proc. IEEE/CVF Winter Conf.
Appl. Comput. Vis., 2021, pp. 3844–3852.

[24] J. Choi et al., “SelfDeco: Self-supervised monocular depth completion
in challenging indoor environments,” in Proc. IEEE Int. Conf. Robot.
Automat., 2021, pp. 467–474.

[25] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning
of depth and ego-motion from video,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 6612–6619.

[26] M. Henein, J. Zhang, R. Mahony, and V. Ila, “Dynamic SLAM: The
need for speed,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 2123–2129.

[27] J. Wulff, L. Sevilla-Lara, and M. J. Black, “Optical flow in mostly
rigid scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 6911–6920.

[28] D. Li et al., “Motion inspires notion: Self-supervised visual-LiDAR fusion
for environment depth estimation,” in Proc. 20th Annu. Int. Conf. Mobile
Syst. Appl. Serv., 2022, pp. 114–127.

[29] C. X. Lu et al., “milliEgo: Single-chip mmWave radar aided egomotion es-
timation via deep sensor fusion,” in Proc. 18th Conf. Embedded Networked
Sensor Syst., 2020, pp. 109–122.

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proc. Int. Conf. Comput. Vis., 2011,
pp. 2564–2571.

[31] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision LiDAR
odometry and mapping package for LiDARS of small FoV,” in Proc. IEEE
Int. Conf. Robot. Automat., 2020, pp. 3126–3131.

[32] J. Graeter, A. Wilczynski, and M. Lauer, “LIMO: Lidar-monocular vi-
sual odometry,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018,
pp. 7872–7879.

[33] M. Jaderberg et al., “Spatial transformer networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2015.

[34] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[35] T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34, no. 4,
pp. 1004–1020, Aug. 2018.

[36] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” Geor-
gia Inst. Technol., Atlanta, GA, USA, Tech. Rep., 2012.

[37] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Trans. Robot., vol. 28, no. 5,
pp. 1188–1197, Oct. 2012.

[38] A. J. Ben Ali, M. Kouroshli, S. Semenova, Z. S. Hashemifar, S. Y. Ko, and
K. Dantu, “Edge-SLAM: Edge-assisted visual simultaneous localization
and mapping,” ACM Trans. Embedded Comput. Syst., vol. 22, pp. 1–31,
2022.

[39] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[40] “Kitti-dataset,” 2017. [Online]. Available: http://www.cvlibs.net/datasets/
kitti/eval_depth.php?benchmark=depth_completion

[41] “Opencv: Optical flow,” 2022. [Online]. Available: https://docs.opencv.
org/3.4/d4/dee/tutorial_optical_flow.html

[42] G. Farnebäck, “Two-frame motion estimation based on polynomial ex-
pansion,” in Proc. 13th Scand. Conf.. Springer Berlin Heidelberg, 2003,
pp. 363–370.

[43] Z. Zhang, “Determining the epipolar geometry and its uncertainty: A
review,” Int. J. Comput. Vis., vol. 27, pp. 161–195, 1998.

[44] Q.-T. Luong and O. D. Faugeras, “The fundamental matrix: Theory,
algorithms, and stability analysis,” Int. J. Comput. Vis., vol. 17, no. 1,
pp. 43–75, 1996.

[45] “VLP-16,” 2022. [Online]. Available: https://velodynelidar.com/products/
puck/

Authorized licensed use limited to: Tsinghua University. Downloaded on March 05,2025 at 15:27:52 UTC from IEEE Xplore.  Restrictions apply. 

https://www.motortrend.com/news/tesla-model-3-crash-taiwan-autopilot-accident/
https://www.motortrend.com/news/tesla-model-3-crash-taiwan-autopilot-accident/
https://news.yahoo.com/self-driving-car-systems-were-142925251.html
https://news.yahoo.com/self-driving-car-systems-were-142925251.html
https://velodynelidar.com/products/
https://velodynelidar.com/products/
https://www.livoxtech.com/application/autonomous-driving
https://www.livoxtech.com/application/autonomous-driving
http://www.cvlibs.net/datasets/kitti/eval_depth.php{?}benchmark=depth_completion
http://www.cvlibs.net/datasets/kitti/eval_depth.php{?}benchmark=depth_completion
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
https://velodynelidar.com/products/puck/
https://velodynelidar.com/products/puck/


7516 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

[46] “Mid-40-specs,” 2022. [Online]. Available: https://www.livoxtech.com/
cn/mid-40-and-mid-100/specs

[47] J. Zhang and S. Singh, “LOAM: LiDAR odometry and mapping in real-
time,” in Proc. Robot.: Sci. Syst., 2014.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[49] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[51] “Tum tools,” 2021. [Online]. Available: https://vision.in.tum.de/data/
datasets/rgbd-dataset/tools

[52] J. Zhang and S. Singh, “Visual-LiDAR odometry and mapping: Low-
drift, robust, and fast,” in Proc. IEEE Int. Conf. Robot. Automat., 2015,
pp. 2174–2181.

[53] Y.-K. Huang, T.-H. Wu, Y.-C. Liu, and W. H. Hsu, “Indoor depth com-
pletion with boundary consistency and self-attention,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. Workshops, 2019, pp. 1070–1078.

[54] C. X. Lu et al., “See through smoke: Robust indoor mapping with low-cost
mmWave radar,” in Proc. 18th Int. Conf. Mobile Syst. Appl. Serv., 2020,
pp. 14–27.

[55] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison,
“CodeSLAM—learning a compact, optimisable representation for dense
visual SLAM,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 2560–2568.

[56] J. Xu et al., “Edge assisted mobile semantic visual SLAM,” in Proc IEEE
Conf. Comput. Commun., 2020, pp. 1828–1837.

[57] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate
SLAM? combining events, images, and IMU for robust visual SLAM in
HDR and high-speed scenarios,” IEEE Robot. Automat. Lett., vol. 3, no. 2,
pp. 994–1001, Apr. 2018.

[58] D. Wisth, M. Camurri, S. Das, and M. Fallon, “Unified multi-modal
landmark tracking for tightly coupled LiDAR-visual-inertial odom-
etry,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 1004–1011,
Apr. 2021.

[59] M. Brossard and S. Bonnabel, “Learning wheel odometry and IMU er-
rors for localization,” in Proc. IEEE Int. Conf. Robot. Automat., 2019,
pp. 291–297.

[60] A. Kirillov et al., “Segment anything,” 2023, arXiv:2304.02643.
[61] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.

IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.
[62] P.-Y. Chen, A. H. Liu, Y.-C. Liu, and Y.-C. F. Wang, “Towards scene under-

standing: Unsupervised monocular depth estimation with semantic-aware
representation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 2624–2632.

[63] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S.
Sridharan, “Elastic LiDAR fusion: Dense map-centric continuous-
time SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2018,
pp. 1206–1213.

[64] X. Zuo et al., “LIC-fusion 2.0: LiDAR-inertial-camera odometry with
sliding-window plane-feature tracking,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2020, pp. 5112–5119.

[65] T. Boroushaki, I. Perper, M. Nachin, A. Rodriguez, and F. Adib, “RFusion:
Robotic grasping via RF-visual sensing and learning,” in Proc. 19th ACM
Conf. Embedded Networked Sensor Syst., 2021, pp. 192–205.

[66] S. Sami, Y. Dai, S. R. X. Tan, N. Roy, and J. Han, “Spying with your robot
vacuum cleaner: Eavesdropping via LiDAR sensors,” in Proc. 18th Conf.
Embedded Networked Sensor Syst., 2020, pp. 354–367.

[67] Y. Cao, A. Dhekne, and M. Ammar, “ITrackU: Tracking a pen-like
instrument via UWB-IMU fusion,” in Proc. 19th Annu. Int. Conf. Mobile
Syst. Appl. Serv., 2021, pp. 453–466.

[68] J. Xu et al., “FollowUpAR: Enabling follow-up effects in mobile AR
applications,” in Proc. ACM 19th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2021, pp. 1–13.

[69] C. Yoo, S. Sarmin, I. Hwang, E. Rozner, and M. Cho, “Poster: Deepfind:
Sensor-driven inference acceleration for continuous deep mobile vision
applications,” in Proc. 21st Int. Workshop Mobile Comput. Syst. Appl.,
2020.

[70] S. Yao et al., “Eugene: Towards deep intelligence as a service,” in Proc.
IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 1630–1640.

[71] H. Qiu et al., “Towards robust vehicular context sensing,” IEEE Trans.
Veh. Technol., vol. 67, no. 3, pp. 1909–1922, Mar. 2018.

[72] S. Boovaraghavan, A. Maravi, P. Mallela, and Y. Agarwal, “MLIoT:
An end-to-end machine learning system for the internet-of-things,”
in Proc. Int. Conf. Internet-of-Things Des. Implementation, 2021,
pp. 169–181.

[73] S. Srivastava and G. Sharma, “Self attention guided depth completion
using RGB and sparse LiDAR point clouds,” in 2021IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2021, pp. 2643–2650.

[74] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang, “Does unsupervised
architecture representation learning help neural architecture search?,” in
Proc. Adv. Neural Inf. Process. Syst., 2020.

[75] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2D LiDAR SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2016,
pp. 1271–1278.

[76] H. Osman, N. Darwish, and A. Bayoumi, “LoopNet: Where to focus?
detecting loop closures in dynamic scenes,” IEEE Robot. Automat. Lett.,
vol. 7, no. 2, pp. 2031–2038, Apr. 2022.

Danyang Li (Graduate Student Member, IEEE) re-
ceived the BE degree from the School of Software,
Yanshan University in 2019, and the ME degree from
the School of Software, Tsinghua University in 2022.
He is currently working toward the PhD degree with
the School of Software, Tsinghua University. His re-
search interests include Internet of Things and mobile
computing.

Jingao Xu (Member, IEEE) received the BE and PhD
degrees from the School of Software, Tsinghua Uni-
versity in 2017 and 2022, respectively. He is currently
a postdoc research fellow with the School of Software,
Tsinghua University. His research interests include
Internet of Things and mobile computing.

Zheng Yang (Fellow, IEEE) received the BE degree
in computer science from Tsinghua University in
2006, and the PhD degree in computer science from
the Hong Kong University of Science and Technology
in 2010. He is currently an associate professor with
Tsinghua University. His research interests include
Internet of Things and mobile computing. He is the
PI of the National Natural Science Fund for Excellent
Young Scientist. He was the recipient of the State
Natural Science Award (second class).

Qiang Ma (Member, IEEE) received the BS degree
from the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 2009, and
the PhD degree from the Department of Computer
Science and Engineering, Hong Kong University of
Science and Technology, in 2013. He is currently
an assistant researcher with the Software School,
Tsinghua University. His research interests include
wireless sensor networks, mobile computing, and
privacy.

Li Zhang received the BS degree in applied mathe-
matics from Anhui Normal University in 1999, and
the MS and PhD degrees in computational mathemat-
ics and computer science and technology from the
Hefei University of Technology, in 2004 and 2009,
respectively. Her research interests include computer-
aided geometric design, computer graphics, and im-
age processing.

Pengpeng Chen received the PhD degree from the
Department of Computer Science and Technology,
Ocean University of China in 2011. He is currently
a professor with the Department of Computer Sci-
ence and Technology, China University of Mining
and Technology. His research interests include sensor
networks, distributed measurement systems, ocean
observation networks, and data modeling.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 05,2025 at 15:27:52 UTC from IEEE Xplore.  Restrictions apply. 

https://www.livoxtech.com/cn/mid-40-and-mid-100/specs
https://www.livoxtech.com/cn/mid-40-and-mid-100/specs
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


