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Accurate localization of unmanned aerial vehicle (UAV) is critical for navigation in GPS-denied regions, which

remains a highly challenging topic in recent research. This article describes a novel approach to multi-sensor

hybrid coupled cooperative localization network (HCCNet) system that combines multiple types of sensors

including camera, ultra-wideband (UWB), and inertial measurement unit (IMU) to address this challenge. The

camera and IMU can automatically determine the position of UAV based on the perception of surrounding

environments and their own measurement data. The UWB node and the UWB wireless sensor network (WSN)

in indoor environments jointly determine the global position of UAV, and the proposed dynamic random

sample consensus (D-RANSAC) algorithm can optimize UWB localization accuracy. To fully exploit UWB

localization results, we provide an HCCNet system which combines the local pose estimator of visual inertial

odometry (VIO) system with global constraints from UWB localization results. Experimental results show

that the proposed D-RANSAC algorithm can achieve better accuracy than other UWB-based algorithms. The

effectiveness of the proposed HCCNet method is verified by a mobile robot in real world and some simulation

experiments in indoor environments.
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1 INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely applied in various fields, including civil-
ian applications [22], target tracking [47], search and rescue [1], and industrial inspections [16],
demonstrating immense potential. In indoor applications, real-time localization of UAVs is a critical
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component of guidance, navigation, and control (GNC) systems. Almost all UAVs are equipped
with Global Navigation Satellite System (GNSS) receivers for outdoor localization. However,
GNSS is unreliable or even unavailable in indoor environments due to signal attenuation caused
by buildings, walls and other structures. To overcome the complexity of indoor environments and
the limitations of GNSS unavailability, researchers have proposed various innovative localization
methods and technologies, such as WiFi [35], RFID [46], Bluetooth [48], LiDAR [38], and inertial
navigation [42].

Visual inertial odometry (VIO), combining visual and IMU data, is becoming a key method
for indoor UAV localization. It uses cameras to capture and analyze environmental images, identify-
ing feature keypoints [24] and tracking optical flow [33]. Simultaneously, inertial measurement

unit (IMU) measures the UAV’s acceleration and angular velocity. This integration enhances the
robustness and accuracy of UAV localization and scene understanding. Although VIO technology
is one of the primary methods for indoor UAV localization, it still faces two main challenges: accu-
mulated drift and the limitation of global coordinate localization. Accumulated drift is a common
issue in VIO methods, where scale information gradually deviates from the real-world scale due
to camera and IMU measurement errors, inaccurate feature tracking, and other factors. This ac-
cumulated drift results in a deviation between localization results and real environments, which
becomes more prominent in long-duration operations or large-scale movements. In addition, VIO
methods focus on estimating a camera’s relative coordinate position changes but do not directly
provide absolute localization information about the global coordinate. These two problems limit
the practical application of VIO methods.

Integrating ultra-wideband (UWB) sensors offers a promising remedy for tackling accumu-
lated drift within VIO while establishing comprehensive global coordinate localization [15]. UWB
technology’s wideband signal transmission and precise ranging capabilities enable accurate dis-
tance measurement and position estimation. The accumulated drift issue in VIO can be rectified by
installing UWB sensors on the UAV to measure the distance between the UAV and the ground base
station. In addition, UWB sensors provide global coordinate position data by deploying multiple
base stations in indoor environments. However, UWB sensors are affected by indoor environments
which will lead the decrease in localization accuracy.

By reason of the foregoing, we propose an HCCNet system which employs a novel hybrid cou-
pled method to fuse the results of UWB and VIO. We first introduce a D-RANSAC algorithm to
improve the quality of UWB localization results in indoor environments. Subsequently, our
methodology extends to the sophisticated integration of tightly and loosely coupled mechanisms
within the HCCNet framework, aiming to optimize the fusion of multi-sensor localization data.
Through extensive experiments, we demonstrate that D-RANSAC can effectively suppress UWB
localization outliers and obtain high-quality localization results with a small number of anchors.
The proposed HCCNet system significantly improves accuracy and robustness compared to the
state-of-the-art VIO system by fully exploiting UWB localization results. Our tests show that our
system can locate positions within about 9cm accuracy in various real settings.

The main contributions of this article are as follows:

(1) A novel outlier filtering technique, namely D-RANSAC algorithm, is proposed in this article.
This technique combines the sliding window method and the RANSAC algorithm to identify
and remove outliers effectively.

(2) The HCCNet system is introduced in this article. It integrates nonlinear optimization and
particle filtering approaches to fuse the localization results of UWB and VIO. This phased
approach mitigates the issue of accumulated drift over time and provides reliable global
localization results.
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(3) We conduct extensive simulations and real-world experiments to evaluate the performance
of our system. The experimental results show that our proposed HCCNet system outper-
forms other state-of-the-art frameworks for localization accuracy.

2 RELATED WORK

2.1 Multi-sensor Fusion Localization Methods

Multi-sensor fusion algorithms in the field of localization can be broadly categorized into tightly
coupled [13, 25, 27] and loosely coupled approaches [2, 23]. The loosely coupled framework fuses
the pose estimation results of different sensors separately, which cannot fully use their respective
advantages. However, in a tightly coupled framework, the information between different sensors
and subsystems affects each other, and their advantages can be better used.

In loosely coupled approaches, the VIO module operates as an independent entity. These meth-
ods do not continuously integrate new measurements to improve real-time accuracy. Instead, they
address accumulated drift intermittently, usually during infrequent location requests, leading to
corrections by jumps. Qin et al. [32] and Mascaro et al. [21] employed pose graph optimization
techniques to enhance the alignment between GPS and VIO coordinates. Gao et al. [7] introduced
a method for low-drift VIO in indoor settings. They combined UWB localization with a cost func-
tion and nonlinear optimization to enhance location measurements. In a similar vein, Liu et al.
[17] presented a technique for mobile robot localization and map construction. They fused UWB,
odometry, and 2D lidar data and employed graph optimization to mitigate the effects of cumulative
errors. Xu et al. [44] achieved instant indoor navigation with a high success rate by using the trajec-
tory experience of previous facilitators to guide future users in a peer-to-peer mode. Lin et al. [15]
improved the accuracy of VIO by integrating UWB localization using a loosely coupled approach
for the localization problem of UAVs in GPS-denied environments. Gong et al. [8] used a two-stage
loosely coupled adaptive fusion method to fuse GNSS and VIO for consistent and accurate global
positioning in a GNSS intermittent degradation environment. Zhao et al. [49] proposed a loosely
coupled localization system that integrates multi-base station UWB technology and point-line VIO.
This approach improves localization accuracy and robustness by leveraging multi-sensor fusion
capabilities. In a similar vein, Nguyen et al. [26] devised a scale correction technique for monoc-
ular visual odometry (VO) systems, using UWB distances for real-time scale estimation. This
method does not rely on anchor location information and is compatible with different sensor types.
However, the drawback of the loosely coupled method is that the mutual information between sen-
sors cannot be fully utilized, leading to the loss of accuracy and robustness. In complex scenarios,
loosely coupled methods may not provide sufficiently accurate estimation results.

In tightly coupled approaches, global localization poses or extra distances ranging are inte-
grated as additional measurements. These approaches can enhance real-time accuracy within an
Extended Kalman Filter (EKF) or an optimization-based framework. Nguyen et al. [28] put for-
ward a tightly coupled approach that combines image, IMU, and UWB inputs. Magnago et al. [20]
used an unscented Kalman filter to fuse relative control input and global information from UWB lo-
calization to mitigate cumulative errors in ground mobile robots. The Monte Carlo localization

(MCL) technique was utilized by Perez-Grau et al. [31]. They integrated RGB-D point cloud data,
UWB localization, and IMU data within this approach. Wang et al. [40] introduced a method that
simplified loop detection using multiple pre-configured UWB anchors, reducing computation com-
plexity and error accumulation. Cao and Beltrame [4] used UWB information to mitigate errors
and enhanced mobility by incorporating a single unassigned anchor for localization while retain-
ing the loop detection module. Yang et al. [45] creatively proposed a resilient multi-sensor fusion
method to overcome sensor failures and complex scenes to achieve robust and accurate indoor
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localization. Additionally, Zheng et al. [50] developed a UWB-VIO fusion system aimed at achiev-
ing precise and reliable relative localization for circular robotic teams. Their focus centered on
refining the initialization approach and improving processing in non-line-of-sight (NLOS) con-
ditions. Jung et al. [9] introduced U-VIO, an intricately combined UWB VIO algorithm that utilizes
UWB measurements throughout both front-end and back-end graph optimization stages. Mean-
while, Choi et al. [5] brought forth LUVI, a streamlined UWB-VIO relative positioning method tai-
lored for AR-IoT applications. They prioritize the efficient management of virtual anchors and com-
putational speed. In another vein, Liu et al. [19] proposed an integrated algorithm for autonomous
vehicle localization, merging GNSS, UWB, and VIO to boost accuracy and reliability, especially in
intricate surroundings. This approach capitalizes on UWB technology for indoor absolute position-
ing and VIO for improved navigation in GNSS-obstructed environments. Lastly, Wang et al. [41]
presented a localization scheme designed for range-assisted VIO systems. By incorporating UWB
measurements, they effectively counter VIO drift. Their method features filter-based UWB anchor
localization and observability-constrained optimization. This approach seamlessly blends visual,
inertial, and UWB data, even when fewer than four UWB anchors are available. Although tightly
coupled methods have higher accuracy and robustness, their complexity and sensor requirements
may limit their scope in some applications.

2.2 UWB Localization Methods

Over the past decade, UWB localization has relied on Time of Arrival (TOA) or Time Dif-

ference of Arrival (TDOA) computation to determine the position of a tag relative to known
reference locations called anchors. The high-speed transmission of UWB signals, strong anti-
interference capabilities, and low-power consumption make them well suited for indoor localiza-
tion systems.

Recently, several UWB-based approaches have emerged, particularly targeting environments
where GNSS signals are unavailable. Bottigliero et al. [3] introduced an indoor real-time locat-

ing system (RTLS). The system utilized measurements obtained from non-synchronized UWB
pulse sequences. Liu et al. [18] introduced a cooperative localization system that combines UWB
and Wi-Fi measurements with inertial data. This approach combined long-range Wi-Fi and short-
range UWB localization for multiple users, followed by IMU-based dead reckoning refinement. Li
et al. [14] proposed the ViViPlus indoor positioning system based on WiFi fingerprint, which suc-
cessfully solves the spatial ambiguity and temporal instability problems by introducing a novel
RSS spatial gradient (RSG) matrix form, and significantly improves the positioning accuracy
without additional information or user constraints. Queralta et al. [34] suggested using only Time

of Flight (ToF) distance estimates for localization, analyzing anchor self-correction for mobile
robots to improve system mobility. Lin et al. [36] proposed an error minimization protocol for
node localization in WSN. By combining the information of received signal strength (RSS) and
TOA, a reliable estimation of the position of the node is achieved when the position of the anchor
node is known. Another study by Nguyen et al. [29] investigated collaborative localization among
drones and other platforms. Recent studies have also examined the impact of obstacles on UWB
localization accuracy [43] and proposed composite filtering methods for handling dynamic uncer-
tainty in quadrotor UAVs [11]. However, UWB localization results are still affected by the indoor
environment.

In this article, we use a novel HCCNet system to combine VIO and UWB localization results.
Because of UWB environmental interference, a D-RANSAC algorithm is proposed to filter lo-
calization outliers. Then, we combine tightly coupled and loosely coupled methods to solve the
accumulated drift and obtain high-precision global localization results.
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Fig. 1. Flowchart of HCCNet system.

3 SYSTEM OVERVIEW

The proposed HCCNet system is structured using a framework shown in Figure 1. It comprises
two main components: a measurement preprocessing module and a hybrid coupled cooperative
module.

In the measurement preprocessing module, the preprocessing process is performed on cam-
era, IMU and UWB sensors. More specifically, the feature information in the image is extracted,
and IMU data between two consecutive frames is pre-integrated. The UWB localization results
are affected by outliers generated by indoor environments, which are filtered by the proposed D-
RANSAC algorithm. The camera, IMU, and UWB measurements are then forwarded to a tightly
coupled module for pose estimation.

In the hybrid coupled module, we first adopt a tightly coupled method to obtain preliminary
pose. Then, a loosely coupled method based on particle filtering is used to fuse the tightly coupled
pose and UWB global localization results. In this stage, the hybrid coupled module will achieve
accurate pose estimation.

Overall, the proposed HCCNet system provides an efficient and accurate approach to estimate
system position in real-time. The measurement preprocessing, tightly coupled nonlinear optimiza-
tion, and loosely coupled particle filtering approaches provide a comprehensive solution to ensure
reliable position estimation.

4 D-RANSAC ALGORITHM

RANSAC emerges in machine vision literature as a quick algorithm for outlier removal and camera
pose estimation [6]. It excels in datasets filled with many outliers. Yet, it requires at least 50% of
the data to be inliers for best results. This method aims to estimate model parameters using a
small observed data subset. However, RANSAC might find it challenging to pick such a subset
accurately. This subset needs to reflect complex motion patterns found in UAV motion trajectories’
prevalent nonlinearities. In cases of nonlinear motion, outliers tend to scatter widely and unevenly.
This scattering poses big challenges for RANSAC in precisely identifying and removing outliers.
UWB localization outcomes intensify RANSAC’s challenges due to signal propagation’s complex
dynamics. This complexity results in more noticeable outliers, increasing RANSAC’s difficulty in
this area.
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Fig. 2. Outliers removed by D-RANSAC algorithm.

In indoor environments, the influence of noise on UWB-based localization is inevitable, leading
to potential inaccuracies in position estimation. This article assumes that UAV motion can be ap-
proximated as a straight line for a short period, which is common in various UAV applications. To
remove outliers from UAV trajectories efficiently, we employ a brand new D-RANSAC algorithm
which combines the advantages of the classic RANSAC algorithm and the sliding window method.

The measurement frequency of UWB sensor is used to select M consecutive locations to form
short-term straight trajectories. The D-RANSAC algorithm dedicates a corresponding line model
from theseM locations. First, a line model is fitted to two selected sample locations, randomly. Next,
the error between the all data samples and the model is calculated. Samples with a fitting error
less than a preset threshold are considered interior points. Subsequently, two additional random
sample locations are selected, and the process is repeated to obtain different models. The quality of
each model is evaluated based on the number of interior points in the model. Finally, the optimal
local model and its corresponding interior points are obtained through this process. Algorithm 1
shows the specific process of D-RANSAC.

Figure 2 illustrates a flight trajectory of a UAV. This trajectory comprises a sequence of posi-
tion points, each serving a distinct purpose. The purple points represent UWB anchors, and the
red points correspond to the real trajectory of the UAV. The blue and green points represent the
position points calculated by UWB anchors, which provide auxiliary data for trajectory estimation.
The D-RANSAC algorithm is used to identify green points and effectively remove orange outliers.
After removing the orange points, the trajectory formed by the green points is closer to the real
trajectory of the UAV.

The proposed methodology involves evaluating each location M times and assigning a confi-
dence value based on the number of times it has been evaluated as an interior point. The confidence
value is calculated by

wk ∝
p(Zk |Ik )p(Ik )

p(Zk )

=
p(Ik )

∏
i�k p(Zi |Ii )

p(Zk |Ik )p(Ik ) + p(Zk |Ok )p(Ok )
,

(1)
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ALGORITHM 1: D-RANSAC.

Input: UWB sensor measurements, sliding window size M , distance threshold dist
Output: Local optimal model Mopt

Initialize local optimal model Mopt ;

for sliding window do

Initialize inlier set Sin and outlier set Sout ;

for i = 1 to N iterations do

Randomly select 2 points to form a model;

Compute the distance;

Determine rationality of each point;

if distance ≤ dist then

Add point to inlier set Sin ;

else

Add point to outlier set Sout ;

end

end

Evaluate model quality;

Select local optimal model Mopt ;

end

return Mopt ;

where Ik and Ok denote the probability that point k is an inlier or outlier, respectively; Zk denotes
the distance from point k to the optical model. The values of i and k range from 0, 1, 2, . . . ,M .

This approach ensures that the confidence of each location is proportional to the number of its
interior evaluations, providing a measure of certainty. Furthermore, this confidence value is used
in subsequent stages of the procedure, making the system resilient to outliers.

By incorporating confidence values into the approach, we can reduce the effect of outliers and
improve the accuracy of the results. This strategy is particularly beneficial in scenarios where the
data is susceptible to noise or other sources of variability. This approach can produce consistent
and reliable results robust to outliers.

5 HYBRID COUPLED COOPERATIVE LOCALIZATION NETWORK

5.1 Tightly Coupled Stage

The hybrid coupled model, illustrated in Figure 3, employs distinct strategies at different stages.
During the tightly coupled stage, nonlinear optimization comes into play, whereas the loosely
coupled stage utilizes the particle filter method.

VIO is a robust tool for achieving real-time precision in both indoor and outdoor settings. How-
ever, a notable drawback emerges the accumulation of errors over time, resulting in significant
localization drift issues during practical use. To counter this challenge, we propose a solution: in-
troduce constraints to the VIO system via the short-term variations in UWB localization outcomes.

In the back-end optimization of our system, a tightly coupled nonlinear optimization method
is mainly used. The corresponding residual terms are constructed to solve the maximum likeli-
hood estimation problem based on the measurement data of different sensors. The best solution
of optimization process can be seen as a precise state estimation. The states for estimation are
defined as:

X = [XU ,XV I ], (2)

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 100. Publication date: July 2024.
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Fig. 3. Diagram of multi-sensor hybrid coupled fusion method.

XU = [u0, u1, . . . , un], (3)

XV I = [x0, x1, . . . , xn , λ0, λ1, . . . , λm], (4)

xk = [p
c
bk , v

c
bk , q

c
bk , ba , bд],k = 0, 1, 2, . . . ,n, (5)

uh = [p
G
xh , p

G
yh , p

G
zh],h = 0, 1, 2, . . . ,n. (6)

The state vector is denoted as X with including the states of IMU, UWB, and vision. The kth IMU
state, denoted as xk , which includes the position pc

bk
of the IMU center relative to the camera

coordinate system, velocity vc
bk

, direction qc
bk

, accelerometer offset ba , and gyroscope offset bд . n
is the total number of keyframes, andm is the total number of features in the sliding window. λi is
the inverse distance of the ith feature from its first observation. uh is the UWB localization result
corresponding to the hth frame.

The maximum likelihood estimation problem can be framed as a nonlinear optimization issue.
The residual component EV I linked to visual and IMU measurements is expressed as:

EV I =
��rp − HpXV I

��2
+

∑
k ∈β

���rβ (ẑ
bk

bk+1
,XV I )

���2

P
bk
bk+1

+
∑

(l, j)∈C

ρ

(���rc

(
ẑ

c j

l
,XV I

)���2

P
cj

l

)
,

(7)

where ρ(·) represents the Huber norm. The first term of the nonlinear least squares problem in-

cludes rp and Hp , which correspond to the prior information from marginalization. rβ (ẑ
bk

bk+1
,XV I )

and rc (ẑ
c j

l
,XV I ) are the residuals of inertial and visual, respectively. P

bk

bk+1
and P

c j

l
are related mea-

surement covariances, respectively.
In order to better combine the camera, IMU and UWB sensors to reduce the drift problem during

localization. We introduce the residual term EU of the UWB sensor in the optimization process.
Then, the overall cost function E of the whole system is given as

E = EV I + EU . (8)

Unlike the residual term of UWB in other methods, we use a new residual function to optimize
the overall state. Specifically, we calculate the Euclidean distance of UWB localization results on
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adjacent VIO timestamps, formulated as follows:

EU =
∑��TG

C pC
k − pG

k

��2

PU
. (9)

At time step k , pC
k

and pG
k

represent the UAV positions in the VIO coordinate system and the
global coordinate system, respectively. The transformation from the VIO coordinate system to the
global coordinate system is denoted by TG

C
, which is necessary for calculating the positions in

the two coordinate systems. The covariance matrix of each UWB measurement position is repre-
sented by PU .

The Levenberg-Marquardt method is employed to estimate the state at each moment in
the aforementioned cost function. To improve the efficiency and accuracy of our system, we utilize
the sliding window and marginalization method. To solve this nonlinear problem, we adopt the
Ceres solver in this article.

5.2 Loosely Coupled Stage

As previously discussed, integrating UWB localization results as a translation constraint in VIO
has effectively reduced accumulated drift. However, the relative localization information obtained
from this integration does not directly yield knowledge of the global position of UAV. We employ
particle filter to obtain precise global localization information, which combines UWB localization
results with the relative pose estimation derived from the tightly coupled stage. In the following
sections, we will analyze by outlining the steps implemented in the particle filtering process:

Initialize. The loosely coupled stage receives input from VIO results {tk , < qtk
, ttk
>}, and UWB

results {tk , < xtk
, ytk
, ztk

>}, where tk is the timestamp while the two subsystems have been
aligned. Our system combines these results in particle filter to obtain UAV global localization. We
denote the set of particles as P = {P1, P2, . . . , Pn}, where the state Pi =< xi , yi , zi , qi , ρi > of each
particle consists of position (xi , yi , zi ), attitude qi and weight ρi . During initialization, particles
are assigned the same weight i.e., ρi =

1
n
, i = 1, 2, . . . ,n.

Predict. In the prediction step, we will predict the state of each particle based on the pose trans-
formation and the position estimation. However, obtaining an accurate pose transformation matrix
is one of the most critical techniques when using the tightly coupled stage to predict the current
stage. After aligning UWB sensor timestamps with the timestamps of the tightly coupled phase, we
find that there may be multiple pose transformations within the timestamp interval of the tightly
coupled phase. To solve this problem, we need to predict the states of particles by achieving the
pose transformation between two timestamps.

More specifically, we have aligned the timestamps tG
k

and tG
k+1

of UWB sensor with the time-

stamps tL
k

and tL
k+1

of tightly coupled stage, respectively. If there are no additional timestamps

within the tL
k

and tL
k+1

timestamps, we construct the transformation matrix Tk+1
k

by utilizing ro-

tation quaternions and translation vectors from tL
k+1

, facilitating the conversion between tG
k

and

tG
k+1

:

Tk+1
k =

(
Rq t

0T 1

)
, (10)

where the rotation matrix Rq is a transformation from tL
k

to tL
k+1

. This matrix is derived from the

quaternion q = (w, x, y, z) within tL
k+1

, and its components are given by:

Rq =
��

1 − 2y2 − 2z2 2xy − 2wz 2xz − 2wy

2xy + 2wz 1 − 2x2 − 2z2 2yz − 2wx

2xz − 2wy 2yz + 2wx 1 − 2x2 − 2y2

��� . (11)
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If there are additional timestamps within timestamps tL
k

and tL
k+1

, assume that there are S − 1

timestamps, for example, tL
k

, tL
k,1

, . . ., tL
k,S−1

, tL
k+1

, then we let the transformation matrix in the time

interval [tL
k,m
, tL

k,m+1
] be Tk,m+1

k,m
. Based on the multiplication of transformation matrices, we can

calculate the complete transformation matrix Tk+1
k

in the time [tL
k
, tL

k+1
] is given as follows:

Tk+1
k = Tk+1

k,S−1Tk,S−1
k,S−2

. . . Tk,2
k,1

Tk,1
k
. (12)

With the above calculation, we compute the tightly coupled stage complete transformation ma-

trix Tk+1
k

during the [tL
k
, tL

k+1
] time interval. The 3D position pG

k, j
= (xk, j , yk, j , zk, j )

T of the sampled

particle population at time tG
k

is written in the homogeneous form p̃G
k, j
= (xk, j , yk, j , zk, j , 1)

T. The

homogeneous coordinates of the predicted position of each particle at time tG
k+1

are calculated from
the transformation matrix:

p̃G
k+1, j = Tk+1

k p̃G
k, j , j = 0, 1, 2, . . . ,N . (13)

Therefore, we can obtain predicted position pG
k+1, j

= (xk+1, j , yk+1, j , zk+1, j )
T of each particle at

time tG
k+1

.

Update. In the update step, each particle’s weight is updated by using UWB observation data,
leading to a more accurate posterior probability distribution. First, we obtain the UWB observation
data pG

k+1
at the current time tG

k+1
, which provides the target’s position information. Next, we

calculate the importance weights for each particle. This approach involves evaluating the distance
dk+1, j between the predicted state pG

k+1, j
of each particle and the actual observed data pG

k+1
and

converting the difference into a critical weight. The distance is defined as:

dk+1, j =

���pG
k+1 − pG

k+1, j

��� . (14)

Specifically, the weight ρk+1, j for each particle is established by utilizing the distance from the
observed data. Particles that are closer to UWB detection results will have higher weights, which
are additionally updated as:

ρk+1, j = 1/dk+1, j . (15)

Resample. In resampling step, a new set of particles is chosen based on their weights to better
represent the posterior probability distribution. We perform the following operations:

(1) Normalize the weight of particles

ρ̄k+1, j =
ρk+1, j∑m

j=1 ρk+1, j
, (16)

where m is the current number of particles.
(2) Generate a sequence of random numbers between [0, 1). These random numbers will be used

to sample from the collection of particles to decide which particles need to be replicated.
(3) Resample particles within an ellipse:

|(xn , yn , zn) − LV I | + |(xn , yn , zn) − LU | ≤ 2D, (17)

where LV I and LU are VIO and UWB location results, respectively; and D is the maximum
positioning error.

(4) Generate a particle with index n, denoted as:

Xn =< xn , yn , zn , hn , ρn > . (18)

(5) Repeat steps (2), (3), and (4) until the desired number of resampling particles is reached.
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Fig. 4. Hardware setup and experimental environment.

In the resampling process, these steps improve the approximation of particle set to the tar-
get distribution, eliminating low-weight particles, and enhancing the filter performance and
robustness.

Estimate. Due to the fluctuation of VIO position and UWB position in indoor environments
during particle movement, we chose to calculate the weighted average of all particles as the target
position:

(x, y, z) =

N∑
n=1

(xn , yn , zn) ρn, (19)

which can make the obtained position estimate more robust.

6 EXPERIMENT

In this section, we present three sets of experiments assessing our proposed method. The first set
entails executing the D-RANSAC algorithm across diverse indoor motion trajectories to gauge its
efficacy. The second set involves comprehensive benchmark tests using the EuRoC public dataset
on the HCCNet system, where we compare our approach against leading VIO methods to under-
score its accuracy and robustness. Lastly, the third set implements the HCCNet system within
complex indoor environments to assess its positioning performance.

Throughout these experiments, data collection employs the Intel RealSense Depth Camera D435i
and the Decawave UWB RF Module DWM1000. The D435i camera, a structured light depth cam-
era, provides monocular image content, while its integrated IMU enhances localization accuracy.
The DWM1000 module employs UWB technology for precise ranging and localization capabilities,
measuring UAV-to-base station distances via signal time delay and multipath propagation effects.
As shown in Figure 4, both components are accurately calibrated to align acquired data with the
environment. The backend optimization module runs on an Intel(R) Celeron(R) G4900T CPU @
2.90 GHz, 16.0 GB RAM server operating Ubuntu 16.04.

6.1 D-RANSAC Algorithm for Outlier Filtering

In this experiment, we focus on verifying the effectiveness of the proposed D-RANSAC algo-
rithm in detecting and rejecting outliers in UWB localization results under indoor environmental
interference.

Experimental Setup. We conduct experiments in representative indoor scenes, including class-
room buildings and office buildings, based on the outliers generated by sensors and different
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Table 1. Comparison of UWB Localization Mean Error (ME) Performance under Different Methods

Dataset

ME Method
LS

(n = 4)
LS

(n = 5)
LS

(n = 6)
EKF

(n = 4)
UKF

(n = 4)
TS-KF
(n = 4)

SL-LS
(n = 4)

D-RANSAC
(n = 4)

O/Straight-Line 0.1128 0.1199 0.1004 0.1067 0.0998 0.0973 0.1074 0.0963

O/L-shaped 0.1216 0.1096 0.0926 0.1048 0.0974 0.1157 0.1001 0.0910

O/U-shaped 0.1115 0.1041 0.1046 0.1067 0.1022 0.0988 0.1069 0.0986

O/Z-shaped 0.1133 0.1080 0.1022 0.0996 0.1154 0.1071 0.1006 0.0926

C/Straight-Line 0.1074 0.0966 0.0965 0.1031 0.0945 0.1034 0.1129 0.0900

C/L-shaped 0.1059 0.0950 0.0874 0.0917 0.0928 0.0941 0.0909 0.0885
C/U-shaped 0.1035 0.0918 0.0902 0.0972 0.0931 0.0920 0.0964 0.0904
C/Z-shaped 0.1049 0.0831 0.0843 0.0914 0.1121 0.0856 0.0901 0.0826

1 The values in bold are the smallest values in their respective rows.
2 “O” represents office scenario, while “C” denotes classroom scenario.
3 The letter “n” indicates the number of UWB anchors.

environmental conditions. These scenes have different spatial geometries and environmental dy-
namics, providing different challenges for estimating localization results. In the classroom scene,
there is only minimal interference from radio signals, and the geometric shapes of the scene are
regular, with objects in close proximity to the sensing devices. However, in the office scene, many
interfering radio signals increase the likelihood of UWB outliers. We collect trajectory data specific
to different scenes in our experiments. Fixed motion trajectories of UWB tags are set, including
straight-line, L-shaped, U-shaped, and Z-shaped trajectories. We simulate outliers by temporarily
occluding the tag during its movement.

Quantitative Comparison. We assess the localization algorithm primarily by utilising of the mean
error (ME) as a fundamental metric. Moreover, we examine the stability and precision of the out-
comes by calculating the standard deviation (SD) associated with the localization data. To ensure a
comprehensive evaluation, we introduce an additional metric, the maximum absolute error (MAX),
into our analysis.

We conduct comprehensive experiments to assess the D-RANSAC algorithm thoroughly. Our
evaluation includes various numbers of UWB anchors, motion trajectories, and comparisons with
established indoor localization techniques in different settings. We benchmark D-RANSAC against
EKF, Unscented Kalman Filter (UKF), and Taylor series-based location estimation technique
(TS-KF) [37].

The EKF approximates nonlinear functions in the Kalman filter using a first-order Taylor series.
It’s known for simplicity and handling small to moderate nonlinearities well. The UKF, an EKF
improvement, uses sigma points to better capture the state distribution. This method excels under
strong nonlinearities. The TS-KF, a recent development, uses the Taylor series for direct location
estimation. It’s efficient and accurate, especially with rapid motion changes.

We present experimental outcomes, including ME, SD, and MAX for each dataset, in Tables 1–
3. These tables compare D-RANSAC with EKF, UKF, and TS-KF. This comparison shows D-
RANSAC’s strengths. It is robust to environmental changes and accurate with few UWB anchors.

In the context of the office experimental scene, employing four UWB anchors, the D-RANSAC
algorithm demonstrates substantial enhancements in localization accuracy across different tra-
jectory shapes: straight-line, L-shaped, U-shaped, and Z-shaped. Specifically, the average local-
ization errors for these trajectories are 0.0963 m, 0.0910 m, 0.0986 m, and 0.0926m, respectively.
These improvements amount to 14.63%, 25.22%, 11.57%, and 18.34% compared to the original
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Table 2. Comparison of UWB Localization Standard Deviation (SD) Performance

under Different Methods

Dataset

SD Method
LS

(n = 4)
LS

(n = 5)
LS

(n = 6)
EKF

(n = 4)
UKF

(n = 4)
TS-KF
(n = 4)

SL-LS
(n = 4)

D-RANSAC
(n = 4)

O/Straight-Line 0.0758 0.0893 0.0685 0.1590 0.1084 0.0595 0.0729 0.0586

O/L-shaped 0.0887 0.0813 0.0731 0.0914 0.0728 0.0690 0.0772 0.0654

O/U-shaped 0.0776 0.0737 0.0807 0.1938 0.1305 0.0787 0.0776 0.0769

O/Z-shaped 0.0898 0.0835 0.0797 0.1471 0.0875 0.1340 0.0770 0.0750

C/Straight-Line 0.0857 0.0645 0.0679 0.1577 0.1090 0.0684 0.0869 0.0677

C/L-shaped 0.0779 0.0791 0.0663 0.1031 0.0709 0.0698 0.0751 0.0659

C/U-shaped 0.0799 0.0711 0.0684 0.2033 0.1364 0.0700 0.0821 0.0676

C/Z-shaped 0.0786 0.0666 0.0605 0.1468 0.0848 0.1217 0.0650 0.0602

1 The values in bold are the smallest values in their respective rows.
2 “O” represents office scenario, while “C” denotes classroom scenario.
3 The letter “n” indicates the number of UWB anchors.

Table 3. Comparison of UWB Localization Maximum Absolute Error (MAX)

Performance under Different Methods

Dataset

MAX Method LS
(n = 4)

LS
(n = 5)

LS
(n = 6)

EKF
(n = 4)

UKF
(n = 4)

TS-KF
(n = 4)

SL-LS
(n = 4)

D-RANSAC
(n = 4)

O/Straight-Line 0.3467 0.4114 0.2853 1.4969 0.9954 0.2510 0.3467 0.2487

O/L-shaped 0.3457 0.4206 0.3679 0.7118 0.3643 0.2991 0.3457 0.2463

O/U-shaped 0.3796 0.3753 0.3590 2.6518 1.6820 0.5177 0.3796 0.3111

O/Z-shaped 0.4762 0.3977 0.3578 2.2073 0.4443 1.777 0.3413 0.3579

C/Straight-Line 0.4591 0.2997 0.3010 1.4438 0.9417 0.3068 0.4519 0.2915

C/L-shaped 0.3546 0.3976 0.3654 1.0012 0.3439 0.2726 0.3546 0.2712

C/U-shaped 0.3868 0.3474 0.3174 2.7877 1.7600 0.3074 0.3764 0.2876

C/Z-shaped 0.4800 0.3779 0.3085 2.2628 0.4061 1.5822 0.4800 0.3090

1 The values in bold are the smallest values in their respective rows.
2 “O” represents office scenario, while “C” denotes classroom scenario.
3 The letter ‘‘n” indicates the number of UWB anchors.

localization outcomes. Similarly, the algorithm reduces localization standard deviations by 22.69%,
26.27%, 0.91%, and 16.36%, as depicted in Figures 5(a) and 5(b).

In the classroom building scene, employing four UWB anchors, the D-RANSAC algorithm also
demonstrates notable accuracy enhancements. Average localization errors of 0.0900 m, 0.0885m,
0.0904m, and 0.0826m are observed for the same trajectory shapes, translating to accuracy im-
provements of 16.20%, 16.43%, 12.66%, and 21.26% compared to the original localization results.
Correspondingly, standard deviations reduce by 22.63%, 15.40%, 15.39%, and 23.41%, as illustrated
in Figures 6(a) and 6(b).

In testing L-shaped and U-shaped paths inside classroom scenes, the D-RANSAC algorithm of-
ten shows suboptimal performance. This issue likely stems from too few anchor points. This lack
makes UWB localization very sensitive to the environment along these specific paths. Such sit-
uations worsen mean errors due to multipath effects and non-line-of-sight (NLOS) propaga-
tion. This impacts D-RANSAC’s overall performance. However, increasing anchor points to six
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Fig. 5. Comparison in classroom environment.

Fig. 6. Comparison in office environment.

improves the least squares method’s resilience to these issues. It then performs better in terms of
average error. This highlights the need to consider environmental factors and anchor placement
strategies in designing indoor localization systems.

Moreover, when applying the D-RANSAC algorithm to the original localization outcomes with
four UWB anchors, the results closely parallel those achieved with six UWB anchors. This indicates
that the algorithm is effective in enhancing localization accuracy and mitigating environmental
interference, particularly in complex real-world scenarios.

Furthermore, our investigation of the maximum impact of outliers in indoor environments
(Figures 5(c) and 6(c)) highlights the algorithm’s significant reduction of maximum positioning
errors in both the classroom and office building environments. This robustness underscores the
D-RANSAC algorithm’s ability to handle indoor interference challenges.

Statistical Advantages of D-RANSAC. To further highlight the D-RANSAC algorithm’s ro-
bustness and efficacy in indoor localization, we conduct performance comparisons. Using the
Mann-Whitney U test, we assess differences between D-RANSAC and other methods, including
LS, EKF, UKF, and TS-KF. Our evaluation covers two indoor environments: office and classroom.
Through these comparisons, we aim to show D-RANSAC’s advantages in indoor localization tasks.
We use P-values from these tests to check if differences in localization accuracy among the methods
are significant. We set the significance level threshold at 0.05, as Table 4 shows.

Our study currently shows that the D-RANSAC algorithm outshines conventional methods sig-
nificantly. In office settings, we notice P-values dropping far below the 0.05 mark. This marks a
notable statistical edge of D-RANSAC over other approaches. Classrooms reveal a similar trend,
affirming D-RANSAC’s utility in diverse indoor situations. Yet, for specific paths in certain places,
the P-values don’t highlight significance, indicating room for enhancement. Overall, our data con-
vincingly prove D-RANSAC significantly boosts indoor localization performance.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 100. Publication date: July 2024.



HCCNet 100:15

Table 4. Mann-Whitney U Test P-Values Comparing D-RANSAC with Other Localization Methods

Dataset

P Value Method LS
(n = 4)

LS
(n = 5)

LS
(n = 6)

EKF
(n = 4)

UKF
(n = 4)

TS-KF
(n = 4)

Office 2.42 × 10−4 3.16 × 10−2 6.32 × 10−2 4.87 × 10−2 7.97 × 10−3 8.17 × 10−24

Classroom 2.10 × 10−7 2.29 × 10−2 2.81 × 10−2 1.62 × 10−4 3.96 × 10−7 1.45 × 10−22

1 The letter “n” n indicates the number of UWB anchors.

Fig. 7. Ablation experiments in different environments.

Ablation Study. In this study, we conduct a series of ablation experiments. Our aim is to see how
our D-RANSAC algorithm stacks up against traditional methods. This focus is on filtering outliers
in complex trajectory data. Due to RANSAC’s limits–mainly its fit for straight-line paths–we use
the sliding window least squares (SL-LS) method for comparison. This helps us check its efficiency
in spotting and managing outliers. Our analysis zeroes in on three main performance metrics: ME,
SD, and MAX in localization, as Tables 1–3 show.

Figures 7(a) and 7(b) visually show the measurement comparison in office and classroom envi-
ronment, respectively. The results are consistent and highlight D-RANSAC’s superior performance
in all metrics. Specifically, for ME, D-RANSAC significantly reduces errors, showing its preci-
sion. In evaluating SD, D-RANSAC’s lower values prove its consistent localization results. Also,
D-RANSAC maintains the smallest range in MAX, showing its strength against extreme outliers.

These findings strongly support our hypothesis. By integrating the robustness of RANSAC
with the flexibility of sliding window least squares, D-RANSAC not only overcomes traditional
RANSAC’s limitations in handling complex trajectories. It also significantly improves accuracy and
reliability in filtering outliers. Thus, our research offers an effective solution for managing complex
trajectory data full of outliers. It expands RANSAC’s applicability across diverse scenarios.

Parameters Sensitivity Analysis. We perform parameter sensitivity analysis for the D-RANSAC
algorithm’s settings. These experiments aim to assess how different sliding window sizes (M =
15, 25, 30, 35, 45) and distance thresholds (d = 5cm, 8cm, 10cm, 13cm, 15cm) affect its performance.
We measure these settings’ impact on performance by comparing ME. The results appear in
Tables 5 and 6.
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Table 5. Comparison of D-RANSAC Algorithm’s Maean Error Values under Various Sliding Window Size

Dataset

ME Method
D-RANSAC

(M = 15)
D-RANSAC

(M = 25)
D-RANSAC

(M = 30)
D-RANSAC

(M = 35)
D-RANSAC

(M = 45)

O/Straight-Line 0.1245 0.1224 0.0963 0.0976 0.1144
O/L-shaped 0.1342 0.1241 0.0910 0.1205 0.0974
O/U-shaped 0.1193 0.1198 0.0986 0.1125 0.1222
O/Z-shaped 0.1125 0.1174 0.0926 0.1128 0.0098

C/Straight-Line 0.1131 0.1136 0.0900 0.1007 0.0945
C/L-shaped 0.1075 0.1059 0.0885 0.1121 0.1144
C/U-shaped 0.1097 0.0978 0.0904 0.1036 0.1164
C/Z-shaped 0.1009 0.0994 0.0826 0.1021 0.0964

1 The values in bold are the smallest values in their respective rows.
2 “O” represents office scenario, while “C” denotes classroom scenario.
3 The letter “M” indicates the sliding window size.

Table 6. Comparison of D-RANSAC Algorithm’s Mean Error Values under Various Distance Threshold

Dataset

ME Method
D-RANSAC
(d = 5cm)

D-RANSAC
(d = 8cm)

D-RANSAC
(d = 10cm)

D-RANSAC
(d = 13cm)

D-RANSAC
(d = 15cm)

O/Stright-Line 0.1163 0.1340 0.0916 0.1214 0.1214
O/L-shaped 0.0956 0.0951 0.0891 0.1050 0.1014
O/U-shaped 0.0993 0.0997 0.0986 0.1037 0.1073
O/Z-shaped 0.1154 0.1164 0.0926 0.1175 0.1093

C/Stright-Line 0.0928 0.0950 0.0900 0.0995 0.1051
C/L-shaped 0.0869 0.0929 0.0885 0.0979 0.0936
C/U-shaped 0.0925 0.0926 0.0904 0.0926 0.0920
C/Z-shaped 0.0853 0.0856 0.0826 0.0837 0.0830

1 The values in bold are the smallest values in their respective rows.
2 “O” represents office scenario, while “C” denotes classroom scenario.
3 The letter d indicates the distance threshold.

In Table 5, D-RANSAC achieves the smallest maximum error values for all trajectory types with
a sliding window size of 30. Figure 8(a) gives a specific demonstration. Figures 8(b) and 8(c) re-
spectively depict cumulative distribution functions (CDFs) of localization errors within office
and classroom settings. This suggests that a sliding window size of 30 is ideal for optimal localiza-
tion accuracy. This ideal size allows D-RANSAC to balance detail and overview. With 30 points,
it captures enough trajectory patterns. It avoids noise that smaller windows might miss. Larger
windows could dilute important details. Thus, size 30 offers the best accuracy for different paths.
It suits the dynamic nature of indoor movements. This makes D-RANSAC versatile for various
indoor scenarios.

Similarly, Table 6 shows a 10-cm distance threshold works best. Figure 9(a) gives a specific
demonstration. Figures 9(b) and 9(c), respectively, depict CDFs of localization errors within of-
fice and classroom settings. It gives D-RANSAC the lowest errors in all paths, in both office and
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Fig. 8. Comparison of metrics for different sliding windows in different environments.

Fig. 9. Comparison of metrics for different distance thresholds in different environments.

classroom settings. This confirms our distance choice boosts precision well. A 10-cm threshold
balances accuracy and flexibility. It’s tight enough to filter out large errors but forgiving for minor
inaccuracies. This setting helps D-RANSAC ignore minor fluctuations while catching real outliers.
It suits the varied indoor dynamics, ensuring reliability across different areas. Thus, this threshold
enhances D-RANSAC’s ability to pinpoint locations accurately.

These experimental results back the practical use of our proposed parameters. They also show D-
RANSAC’s potential in indoor localization. Through these well-planned experiments, we believe
the chosen parameters deliver accurate and reliable services.

6.2 Comparison on EuRoC Public Dataset

In this section, we compare the proposed HCCNet system with state-of-the-art VIO systems using
a publicly available benchmark dataset.

Experimental Setup. The performance assessment of the HCCNet system takes place on the pub-
licly accessible EuRoC dataset. This dataset comprises 11 visual-inertial datasets captured by a mi-
cro aerial vehicle (MAV) as it navigates through three distinct static scenes. These scenes include
two VICON rooms (V1 and V2) and a machine hall (MH). However, since the EuRoC dataset lacks
publicly available UWB sensor localization data, we make appropriate adjustments to simulate the
input of UWB positioning. In our simulation experiments, we add Gaussian-distributed noise to
the real data of the EuRoC dataset. This noise is configured to have deviations of 10 cm in the
x and y dimensions, and 50 cm along the z-axis. By introducing this noise, we can simulate the
uncertainty and errors of actual UWB positioning and provide it as input to our algorithm.

We conduct benchmark tests on HCCNet and compare it with top VIO systems. These include
MSCKF [23], OKVIS [12], ROVIO [2], VINS-MONO [33], EQVIO [39], EKF [15], and a UWB-
integrated VIO method [45]. We also look at VIUNet [10], which uses deep learning for feature
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Table 7. Comparison of Different VIO Methods in the EuRoC Dataset

ATE MSCKF ROVIO
VINS

MONO
OKVIS EQVIO

Tightly
Coupled

VIUNet EKF HCCNet-D HCCNet

MH01 0.4346 0.2982 0.1731 0.2258 0.1214 0.1483 0.1046 0.1385 0.0911 0.0593

MH02 0.4389 0.3297 0.0813 0.1692 0.1726 0.0919 0.0997 0.0887 0.0947 0.0636

MH03 0.2517 0.3925 0.1501 0.2682 0.1119 0.1338 0.2501 0.1452 0.1427 0.1275
MH04 0.6108 0.7237 0.1882 0.2248 0.1721 0.1437 0.1748 0.1202 0.1466 0.1146

MH05 0.4853 1.0533 0.2603 0.3002 0.2521 0.1268 0.1621 0.1198 0.1373 0.1123

V1_01 0.2983 0.1561 0.0634 0.0857 0.0554 0.0909 – 0.0672 0.0880 0.0527

V1_02 0.2011 0.1938 0.2591 0.1801 0.1344 0.1015 0.0809 0.1253 0.1221 0.0958

V1_03 0.6744 0.1699 0.1583 0.1918 0.1863 0.1057 0.0953 0.1257 0.1151 0.0904

V2_01 0.1123 0.2566 0.0795 0.0829 0.0785 0.0868 0.0751 0.0802 0.0820 0.0409

V2_02 0.1652 0.5353 2.0897 0.1551 0.1646 2.0339 0.0848 0.1211 0.1126 0.0848

V2_03 1.1344 0.1882 0.1494 1.9879 0.1935 0.1093 0.0999 0.1319 0.1349 0.1199

1 The values in bold are the smallest values in their respective rows.
2 “–” denotes using V1_01 as the VIUNet model validation sequence.

extraction. It excels in complex indoor localization. We measure their performance on the EuRoC
dataset by the root mean square error (RMSE) of the absolute trajectory error (ATE) in me-
ters. For each dataset, we run 10 trials using EuRoC’s default calibration. We then calculate the
median RMSE ATE as the final result.

Results and Evaluation. The performance evaluation, presented in Table 7, underscores the suc-
cessful operation of the proposed HCCNet system across all datasets, yielding strong results across
the entire range of EuRoC datasets. Our system consistently outperform alternative methods, par-
ticularly evident in the context of ATE, where it achieves the lowest error values. This exceptional
accuracy and precision highlight our system’s superiority.

Interestingly, in comparing VIO methods on the EuRoC dataset, HCCNet now shows top perfor-
mance. Table 7 reveals HCCNet leads over MSCKF, ROVIO, VINS-MONO, OKVIS, and EQVIO in
ATE. The review also looks at VIUNet and EKF. VIUNet uses deep learning for features, doing well
in complex indoor areas. Yet, it doesn’t beat HCCNet. EKF performs well on some datasets but still
has higher ATE than HCCNet. Importantly, HCCNet often scores the lowest ATE, underlining its
edge in accuracy and stability.

Ablation Study. In evaluating VIO methods on the EuRoC dataset, we examine the performance
difference between HCCNet-D and the full HCCNet. HCCNet-D is a version of HCCNet without
the D-RANSAC algorithm. By comparing their ATE, we assess D-RANSAC’s impact on HCCNet’s
performance.

Table 7 shows HCCNet consistently has lower ATE values than HCCNet-D. This indicates that
D-RANSAC greatly improves localization accuracy. Especially in datasets like MH01, MH02, V1_01,
and V2_01, HCCNet’s ATE values are much lower than HCCNet-D’s. This highlights D-RANSAC’s
crucial role in outlier management and localization robustness. D-RANSAC optimizes localization
by accurately identifying and removing outliers, thus achieving higher precision in complex en-
vironments. These findings underline D-RANSAC’s importance in HCCNet, enhancing both ac-
curacy and system stability in tough environments. Therefore, D-RANSAC is vital to HCCNet,
providing a more reliable and precise indoor localization solution.

From a broader perspective, our experimental results robustly establish the effectiveness and
reliability of the proposed HCCNet system. They affirm substantial enhancements in localiza-
tion accuracy and precision when contrastes with existing VIO methods. This accomplishment
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Table 8. Comparison of Trajectory Running Data in Real Environment

ATE
Classroom Hall Office

Loop Random Loop Random Loop Random

VINS-Mono 0.1429 0.5314 0.1377 0.5319 0.1441 0.5325
Tightly Coupled 0.1259 0.1291 0.1133 0.1013 0.1404 0.1444

HCCNet 0.0934 0.0920 0.0924 0.0904 0.0931 0.0910

1 The values in bold are the smallest values in their respective columns.

underscores our system’s considerable contribution to the field, promising advanced solutions for
accurate and reliable localization tasks.

6.3 Comparison in Real Environment

In this section, we further evaluate the performance of the proposed HCCNet system in real indoor
environments.

Experimental Setup. Our objective differ from outlier detection and removal experiments, so we
collect a specific dataset for testing the HCCNet system in indoor environments. We establish dif-
ferent benchmark datasets based on different scene environments, considering major factors such
as environmental interference and information from the capturing devices in real-world scenarios.
We record two types of trajectories in three different environments.

We use a UAV with an Intel RealSense Depth Camera D435i and a Decawave UWB RF mod-
ule DWM1000 to collect benchmark datasets in classroom buildings, offices, and halls. To secure
high-quality data, we guide the mobile robot to move at a slow pace along predetermined paths
in distinct datasets during the data acquisition phase. We use the AprilTag method [30] to obtain
ground truth data for the experiment. AprilTag is an image-based target recognition and localiza-
tion system that identifies and measures tags with specific patterns. These tags typically appear
as 2D codes with unique encoding and geometric features that can be accurately detected and lo-
cated by the camera in the image. We use pre-calibrated AprilTag markers and place them at key
positions in the experimental scenes. The camera captures the positions and orientations of these
tags in real time by observing them in the scene. In each time step of the experiment, we process
and recognize the AprilTag markers in the images to obtain the positions and orientations of the
tags in the real world. These data is considered as ground truth for comparison and evaluation
with the estimation results of our proposed localization algorithm.

Results and Evaluation. As shown in Table 8, HCCNet system successfully run on all datasets
in various indoor environments and obtained more accurate results in terms of RMSE ATE com-
pared to other benchmarked systems. A comparison is made between VINS-Mono and our pro-
posed system. For methods that consider only visual-inertial information, accumulated drift may
not be corrected over time, leading to more pronounced errors. By incorporating UWB data and
visual-inertial information as constraints, the system is improved, further enhancing the system’s
performance by more in-depth particle filter fusion of UWB global localization results with the
preprocessed final results.

To visualise the advantages of our system over others, we present in Figure 10 the trajectory
error curves estimated by VINS-Mono (left) , tightly coupled stage (middle) and our system (right).
Specifically, the positioning accuracy of VINS-Mono is significantly degraded over time, as it is
based on a purely visual-inertial sensor and is subject to positioning drift. In contrast, our system
consistently achieves ideal positioning results. This high accuracy and drift-free performance is
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Fig. 10. Trajectory error curves estimated by VINS-Mono (left), tightly coupled stage (middle) and our system

(right) in classroom.

due to the combination with UWB sensor distance measurements, resulting in accurate positioning
results.

These findings suggest the HCCNet system can provide high localization accuracy in different
environmental conditions. It effectively reduces localization errors, resulting in a higher probabil-
ity of positions with smaller errors. This system is significant for indoor localization applications,
particularly in high-precision and reliability scenarios.

7 CONCLUSION

In this article, we proposed an innovative hybrid coupled fusion network to achieve accurate global
localization estimation for UAVs. The localization results of UWB are detected and refined by the
proposed D-RANSAC algorithm, and the optimized results are incorporated into the tightly cou-
pled and the loosely coupled stages, respectively. We extensively tested our proposed HCCNet
system on public datasets and in real-world experiments, and the results show that its localiza-
tion accuracy is comparable to the state-of-the-art VIO systems. More importantly, we observed a
significant reduction in drift accumulation during the experiment.

However, the proposed HCCNet system requires multiple UWB anchors to achieve localization
and provides global localization results for a single UAV. Future research directions will mainly
focus on two aspects: one is to reduce the number of UWB anchors required to reduce the com-
plexity and cost of the system while maintaining localization accuracy, and the other is to achieve
global localization results for multiple UAVs.

In the future, we plan to expand our work. First, we will explore additional parameter settings
to further enhance positioning accuracy. Second, comparing D-RANSAC with other localization
techniques, particularly in terms of cost and complexity, is also on our agenda. Furthermore, we
aim to investigate the performance of HCCNet in various environments. Finally, with the potential
for real-time applications in mind, enhancing algorithm efficiency is another goal. We anticipate
that these efforts could lead to new breakthroughs in indoor positioning technology.
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