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Smartphone localization is essential to a wide spectrum of applications in the era of mobile computing.

The ubiquity of smartphone mobile cameras and surveillance ambient cameras holds promise for offering

sub-meter accuracy localization services thanks to the maturity of computer vision techniques. In general,

ambient-camera-based solutions are able to localize pedestrians in video frames at fine-grained, but the track-

ing performance under dynamic environments remains unreliable. On the contrary, mobile-camera-based so-

lutions are capable of continuously tracking pedestrians; however, they usually involve constructing a large

volume of image database, a labor-intensive overhead for practical deployment. We observe an opportunity

of integrating these two most promising approaches to overcome above limitations and revisit the problem of

smartphone localization with a fresh perspective. However, fusing mobile-camera-based and ambient-camera-

based systems is non-trivial due to disparity of camera in terms of perspectives, parameters and incorrespon-

dence of localization results. In this article, we propose iMAC, an integrated mobile cameras and ambient

cameras based localization system that achieves sub-meter accuracy and enhanced robustness with zero-

human start-up effort. The key innovation of iMAC is a well-designed fusing frame to eliminate disparity of

cameras including a construction of projection map function to automatically calibrate ambient cameras, an in-

stant crowd fingerprints model to describe user motion patterns, and a confidence-aware matching algorithm to

associate results from two sub-systems. We fully implement iMAC on commodity smartphones and validate

its performance in five different scenarios. The results show that iMAC achieves a remarkable localization

accuracy of 0.68 m, outperforming the state-of-the-art systems by >75%.
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1 INTRODUCTION

The popularity of mobile and pervasive computing has stimulated extensive interests in indoor ap-
plications, such as customer navigation in museums, targeted advertisements in shopping malls,
and personnel emergency rescue in factories. Therein, accurate and easy-to-deploy indoor local-
ization is a key enabler for these services on the horizon. During the past decades, crowdsourced
WiFi-based fingerprinting [27, 32, 34, 39] and inertial-based pedestrian dead-reckoning [14] hit
the mainstream. However, it is well known that inertial-based solutions intrinsically accumulative
errors [33], and WiFi fingerprint suffers from temporal instability and spatial ambiguity [26, 31],
which make these methods yield meter-level accuracy. While meter-level accuracy can roughly
localize or navigate a customer within a shopping mall, sub-meter level accuracy is helpful to
determine which aisle he/she is facing within a particular store, to provide detailed information
when a customer stands in front of a painting in a museum, and to guide a rescuer to find trapped
workers in a race against time.

Recently, as computer vision techniques mature, two arising trends may overcome the above lim-
itations and underpin a practical solution to push the limit of wireless localization: First, surveil-
lance cameras are pervasively deployed in public areas, such as shopping malls, museums, and
galleries. Researchers realize that these widely installed ambient cameras could provide comple-
mentary advantages to conventional wireless localizations in terms of accuracy. Specifically, these
ambient-camera-based approaches [3, 16, 19, 23, 30] rely on surveillance cameras and radio sub-
systems to extract user’s motion patterns (traces or tracklets) from continuous video frames and
wireless signals, respectively. Then, different motion patterns are aligned to differentiate users and
obtain a fused trajectory with enhanced accuracy. However, the visual tracking performance may
degrade in complicated circumstances due to frequent LOS blockages and erroneous detections.
Moreover, the pedestrian’s motion patterns depicted by wireless system are coarse-grained due to
localization bias and accumulative errors [30, 31].

Second, vision capability has become more powerful on mobile devices. Images captured by
mobile are leveraged to assist localization and navigation. Among mobile-camera-based ap-
proaches, simultaneous localization and mapping (SLAM) and structure from motion (SfM)

technologies have made rapid progress and been widely deployed [7, 22, 28, 29, 35]. These ap-
proaches are capable of precisely tracking mobile cameras’ location and pose, but involve a labor-
intensive and time-consuming site survey to gather images (or keyframes) about landmarks. What
is worse, due to frequent LOS blockages by crowds and environmental dynamics, such a cumber-
some site survey needs to be repeated over time.

Albeit inspiring, as illustrated in Figure 1, none of previous studies achieve enhanced localization
accuracy and robustness, meanwhile, ease start-up efforts. Intuitively, since mobile-camera-based

and ambient-camera-based methods enjoy their unique advantages, can we fuse these two arising
trends together to push the limit of indoor localization and achieve all three goals simultaneously?
The integration will improve the precision and robustness of localization, as the leverage of mobile-

camera-based methods could provide a more fine-grained user motion pattern than wireless sys-
tems. However, deployment costs will be reduced: Frame captures by surveillance cameras can
serve as an image database for mobile systems. However, translating this intuition into a practical
system is non-trivial and faces three significant challenges:
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Fig. 1. Comparison of the state-of-the-art works.

• Absence of absolute location. Ambient-camera-based systems are capable of detecting
pedestrians in video frames; however, they cannot obtain absolute locations of pedestrians
in world coordinate (or in floor plan). To solve the problem, previous works [3, 16, 23] need
manual calibration of the camera to acquire a projection matrix, which is labor-intensive.
The most recent work iVR [30] leverages SfM algorithm to automatically calibrate cameras;
however, it requires multi-cameras viewing overlapping areas, thus merely fulfilling a part
of scenarios.

• Incorrespondence of identification. The user IDs provided by vision-based approaches
are typically the labels of pedestrians. However, the sequence of labels individually ac-
quired from ambient-camera-based and mobile-camera-based systems are unordered and
mismatched. This association is a prerequisite to integrate results from each sub-system.

• Disparity of camera perspective. Although mobile cameras and surveillance cameras
view the same area, the perspective and contents they obtain would vary a lot. Specially,
public ambient cameras are stationary and view the area from a top-view, compared with
horizon-view from mobile cameras. It is impractical to directly match their visual features
using current computer vision techniques.

To tackle all challenges above, we propose an integrated Mobile and Ambient Cameras–

(iMAC) based localization that achieves sub-meter accuracy and enhanced robustness with zero
start-up efforts. To acquire absolute location, we propose an automatic construction of projection

map frame to calibrate all the ambient cameras and acquire their projection matrices without
human intervention. To associate user identifications from two sub-systems, we propose an in-

stant crowd fingerprints model (ICFM), a real-time visual description of user motion patterns.
Different from a WiFi fingerprint, ICFM exploits moving pedestrians as instant beacons to de-
scribe user features, which is demonstrated to be more efficient and timely. Meanwhile, we ana-
lyze the disparity of camera perspective to find the same estimation error in location will corre-
spond to unequal errors in angle. In some critical areas, a small variation in the location could
introduce an extremely large angle estimation error that seriously interferes with the result of
localization. We mathematically quantify this unequal measurement error and purposely adopt a
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confidence-aware factor to analyze the similarity of visual features between mobile cameras and
ambient cameras.

We fully prototype iMAC on three different types of smartphones and an Ubuntu server and
conduct extensive experiments in five typical public scenarios with a practical ambient camera
system, including a floor of an office building, a teaching building, a holiday hotel, an art museum,
and a shopping mall. Evaluation demonstrates that iMAC achieves a mean error of 0.68 m and
an 80% error of 1.0 m in all scenarios, which outperforms state-of-the-art smartphone-based sys-
tems by 76.2%. The tracking success rate is more than 90% in all scenarios, including sophisticated
scenarios with multiple static pedestrians, where previous methods all malfunction.

The key contributions are summarized as follows:

• We propose a novel system to fuse ambient-camera-based and mobile-camera-based ap-
proaches, making the most of their complementary advantages while overcoming the draw-
back about labor-intensive start-up efforts. To the best of our knowledge, this is the first
work that integrates ambient camera and mobile camera together and achieves enhanced
localization accuracy.

• We design an automatic ambient camera calibration algorithm without the prior knowledge
of camera poses and human intervention, compared with recent works.

• We fully prototype iMAC and conduct extensive experiments in five different scenarios with
four state-of-the-art approaches. The evaluation results show that with zero start-up efforts,
iMAC achieves sub-meter accuracy (0.68-m location error on average), outperforming exist-
ing works by 76.2%.

In the rest of this article, we first present an overview in Section 2, followed by automatic con-

struction of projection map in Section 3. Instant crowd fingerprint model is presented in Section 4.
Section 5 explains how we achieve precise localization and tracking with confidence-aware esti-

mation. We introduce the settings of experiments in Section 6 and make detailed evaluations in
Section 7. In the end, we review the related work in Section 8 and conclude the proposed work in
Section 9.

2 SYSTEM OVERVIEW

Figure 2 sketches the system architecture of iMAC. Multiple ambient cameras continuously mon-
itor public areas and stream the recorded videos to the server. Meanwhile, the mobile camera
carried by a user logs visual clues and streams the processed features to the server.

2.1 Workflow from the User Perspective

In iMAC, the user records the surrounding environment with its monocular camera and sends
them to iMAC server. In return, iMAC server will send a location tag to the user on the floor plan.
During navigation, iMAC is compatible with both visual targets (e.g., a picture of Starbuck or a
suspect) and semantic location (e.g., Room 211) as destinations. Finally, the user will receive the
optimum path and visual instructions to achieve there.

2.2 Workflow from the Server Perspective

In the initialization stage (in Figure 2), iMAC server automatically calibrates all the ambient cam-
eras and obtains their projection matrices with zero effort.

In the localization stage, a user sends a query (including images of the environment and de-
scription of the destination) to iMAC server. First, a rough location is estimated by a place recog-
nition system called FAB-MAP [6]. Afterwards, to achieve precise localization, we put forward
Instant Crowd Fingerprint Model that identifies the user appearing in the candidate areas. During
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Fig. 2. System overview of iMAC.

matching period, we mathematically quantify unequal estimation between ambient cameras and
mobile cameras, and achieve precise tracking by confidence-aware estimation. After locking the
user and obtain his location, iMAC sends the optimum path and visual instructions to the user.

3 AUTOMATIC CONSTRUCTION OF PROJECTION MAP

Automatically acquiring projection matrix is an indispensable prerequisite to enable ambient-
camera-based navigation to acquire absolute location without human intervention. Most previous
works depend on manual measurement to calibrate ambient cameras, which is a labor-intensive
and time-consuming process. Existing techniques including SfM and visual SLAM require hun-
dreds of overlapping images from different perspectives to reconstruct a three-dimensional (3D)
model of objects, which is unaccessible towards sparse distributed ambient cameras. Most recent
work iVR [30] constructs semantic map requiring two ambient cameras to view same area, which
is a strong assumption and invalid in most cases. We design a scheme combining floor plan to
automatically calibrate ambient cameras and acquire their projection matrix with no assumption
and other prior information.

3.1 Original Camera Pose Estimation

iMAC combines the idea of SfM and crowd trajectory to calibrate the first batch of ambient cameras
that monitor corridors, corners, and doors (Figure 3(a)). To calculate the map relationship between
image-generated 3D point cloud and absolute location, we adopt Indoor Geometric Reasoning [12],
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Fig. 3. Indoor geometric reasoning by line segments with crowd mask.

which assumes that indoor environments satisfy the Manhattan World assumption and recognize
the three-dimensional structure of the interior of a building from a collection of line segments
automatically extracted from single indoor image. However, merge and filter operations [29] fail
to effectively extract building structure from line segments (Figure 3(b)) due to clutter of various
objects in complex indoor scenarios. Inspired by crowdsourcing strategy, we capture the trajectory
of pedestrian movements and generate a crowd mask (Figure 3(c)) through particle filter algorithm.
Assuming the appear and disappear centers of the crowd as the doors or corners, we effectively
remove redundant line segments and extract the building structure (Figure 3(d)) corresponding to
physical scale deriving from the floor plan.

Then, iMAC exploits the idea of Perspective-n-Point (PnP) [15] to calibrate camera external
parameters. Concretely, after Indoor Geometric Reasoning we acquire a set of points correspon-
dences, each composed of a 3D reference point Pi = (Xi ,Yi ,Zi )

T, i = 1, . . . ,n,n � 4 expressed in
world coordinates and its 2D projection pi = (ui ,vi , 1)

T, i = 1, . . . ,n,n � 4 expressed in image
coordinates. T is the transformation matrix with which we can acquire the absolute location of
the points on image. Then, we must solve an optimizing problem to estimate the transformation
matrix T:

T = arg min
T

e = arg min
T

1

2

n∑
i=1

����pi −
1

si

KTPi

����
2

2

, (1)

where e is the cost function of reprojection error, si is the depth of point Pi, K is the intrinsic matrix
that assumed easy to known from factory defaults.

3.2 Neighbour Camera Pose Estimation

Although we acquire satisfied pose estimation of some original cameras, more ambient cameras
whose monitoring areas mismatching the condition have to be calibrated automatically. Fortu-
nately, for security reasons, ambient cameras systems are required to cover public space [20],
which means overlap exists between neighbour cameras. However, these narrow overlapping areas
cannot support the SfM algorithm to extract enough corresponding feature points.

Thanks to astonishing progress of pedestrian detection in recent years, iMAC can calibrate
neighbour cameras through keypoints extracted from the same pedestrian appearing in the over-
lapping area. Figure 4 illustrates the process of neighbour cameras pose estimation.

First, iMAC topologizes the ambient cameras by their neighbour relations and selects a pair
of know-unknown cameras. Then, iMAC recognizes the same pedestrian in the overlapping area
through the Pedestrian Re-Identification technique [2, 37], which performs well under tight spatio-
temporal constraint. To this pedestrian, iMAC adopts OpenPose [4] (a real-time approach to detect
the 2D pose of multiple people in an image) to extract his skeleton and select his arthrosis as feature
points in neighbour images. Afterwards, iMAC exploits these corresponding points to calculate
camera pose estimation.

As shown in Figure 5, P is a pedestrian recognized in the overlapping area of a pose-estimated
camera 1 and a pose-unestimated camera 2. S1 containing the foot keypoints on the floor plane
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Fig. 4. Workflow of automatic camera calibration.

Fig. 5. Calibration of neighbour cameras.

where Z = 0 and the rest keypoints are contained in S2. According to the pinhole model, we get
pixel coordinates p1 = (u1,v1, 1)

T and p2 = (u2,v2, 1)
T on image planes, which are corresponding

points of point P = (X ,Y ,Z )T: {
s1p1 = K1(R1P + t1)

s2p2 = K2(R2P + t2)
, (2)

where K1, R1, t1 are known parameters of calibrated camera 1 and K2, R2, t2 are unknown param-
eters of uncalibrated camera 2. Using PnP algorithm [15], we can obtain K2, R2, t2 and acquire the
projection matrix of camera 2.

Finally, we calibrate all ambient cameras and obtain their projection matrices, which enable
iMAC to acquire absolute location of detected objects in world coordinates.

4 INSTANT CROWD FINGERPRINT MODEL

Mobile-camera-based navigation depends on high-quality recognition of the landmark, which suf-
fers from environment fluctuations and frequent LOS blockages of crowds. Although ambient
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Fig. 6. Workflow of instant crowd fingerprint model.

camera offers instant information of environment, it is unworkable to directly match images from
the mobile camera and the ambient camera since perspective disparity. Conversely thinking, the
crowd not only leads to LOS blockages but also offers a unique description of pedestrian location
and motion pattern. iMAC proposes a brand new model called Instant Crowd Fingerprint Model
to discern different pedestrians based on the description of crowds.

Figure 6 illustrates this process. First, iMAC sever uses MobileNetV3 (a class of efficient mod-
els for mobile vision applications) [10] to detective pedestrians appearing in candidate areas and
acquire their absolute locations. Afterwards, we calculate the geometric estimation of each pedes-
trian Pi, i = 1, . . . ,n,n � 3 to distinguish each potential user. Concretely speaking, each pedestrian
Pi has a series of angles αi = (αi1, . . . ,αi j , . . . αim), j = 1, . . . ,m, which engendered with the rest
m pedestrians in sight:

αi j = arccos

−−−→
PiPj ·

−−−−→
PiPj+1

‖
−−−→
PiPj ‖ ∗ ‖

−−−−→
PiPj+1‖

. (3)

Until now, iMAC sets up an instant fingerprint database of candidate pedestrians. However, it
becomes difficult to estimate geometric relationship for mobile cameras due to scale ambiguity of
monocular vision system.

Fortunately, we find it still accessible to obtain angle informations in (Figure 7). Pi = (xi ,yi , zi )

and Pj = (x j ,yj , zj ) are 3D world coordinates of two objects and P′
i = (x ′

i ,y
′
i , z

′
i ) and P′

j = (x ′
j ,y

′
j , z

′
j )

are their projection on the image plane where Z = f (f is focal length). P∗
i = (ui ,vi ) and P∗

j =

(uj ,vj ) are their 2D pixel coordinates in the image. According to trigonometric constraints:

∠PiOPj = ∠P ′
iOP

′
j , (4)

our aim equals to calculate ∠P ′
iOP

′
j :

∠P ′
iOP

′
j = arccos

(x ′
i ,y

′
i , z

′
i ) · (x

′
j ,y

′
j , z

′
j )

‖(x ′
i ,y

′
i , z

′
i )‖ ∗ ‖(x

′
j ,y

′
j , z

′
j )‖
. (5)

Afterwards, iMAC obtains β = (β1, . . . βi . . . βs ), i = 1, . . . s, s � 2 as an instant fingerprint on
the mobile side, which will be uploaded to iMAC sever and compared with other fingerprints in
ICFM database.
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Fig. 7. Extraction of instant crowd feature from mobile camera based on monocular vision.

Fig. 8. Unequal estimation.

5 PRECISE LOCALIZATION AND TRACKING WITH CONFIDENCE-AWARE

ESTIMATION

However, it is quite unwise to directly compare the similarities of geometric features between a
mobile camera and an ambient camera. Since each side of them has a different function of error,
among which the error of ambient camera depends on location error, but the error of mobile camera
comes from angle error.

As shown in Figure 8(a), θ is an estimation error of angle from the mobile camera, L is the
corresponding location error from the ambient camera, and d is the unit distance from a candidate
pedestrian to reference pedestrian:

L = 2(M − 1)d sin
θ

2
. (6)

When θ is set to a constant, L becomes a linear increasing function of M . That is, to each candidate
pedestrian, the farther a reference pedestrian stands away, the more confidence this reference
pedestrian has.

To eliminate the unequal error, we set different confidence to angles in the fingerprint database.
For example (in Figure 8(b)), P1 is a candidate pedestrian; R1, R2, R3, and R4 are its reference pedes-
trians; and d1, d2, d3, and d4 (d2 � d4 � d3 � d1) are distance between them. α1, α2, and α3 are
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Fig. 9. Query result of one frame by confidence-aware estimation.

fingerprints of P1. According to Equation (6), we first set the confidence of the farthest reference

pedestrian R2 to 1 and the rest R1, R3, R4 to d1

d2
, d3

d2
, d4

d2
, respectively. Then we set different confidence

factor of fingerprints according to the influence of two sides of the angle:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1 =
d1

d2
· 1

F2 = 1 · d3

d2

F3 =
d3

d2
· d4

d2
,

, (7)

where F1, F2, and F3 are the confidence of α1, α2, and α3, respectively. Meanwhile, these confidence
factors will be used to calibrate the rough comparison during query process, which means each
likelihood of angles will multiply its correspond confidence factor to get the last value of likelihood.

Figure 9 illustrates the estimation result of a frame. Usually, we keep several candidate pedestri-
ans a time and repeat the same execution until the right pedestrian is locked.

6 EXPERIMENT SETTINGS

6.1 Implementation Setup

We prototype iMAC front-end on three phones of different types, including a Google Pixel, a
HUAWEI P30 and an iPhone X, which are equipped with different types of mobile cameras and
computing resources. Images are processed on the phone and uploaded to a server, which is a desk-
top computer with i7-9700F CPU of 4.7-GHz main frequency and 16G RAM, runs the Ubuntu 16.04
operation system. The ambient camera we use is HIKIVISION-C3A, which continuously stream
recorded videos to the server. We use Bundler [21] for SfM, EPnP [13] for PnP. We also use Visu-
alSFM [25] to validate and visualize our results.

6.2 Implementation Scenarios

We implement experiments in five different typical public areas, including a floor of an office build-
ing, a teaching building, a holiday hotel, an art museum, and a shopping mall. In each scenario,
We collect video data during different periods of the day to guarantee the cover of different crowd
flows situations. The summarize of collected videos are listed in Table 1.

6.3 Ground-truth Acquisition

To acquire the ground truth of cameras pose, we manually measure the location and orientation
of each ambient camera in the scenarios. Then we use the measurements to calculate projection
as ground truth. In total, we collect 49 calibration results of ambient cameras.
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Table 1. Different Representative Scenarios of Experiments

Scenario Size (m2)
Original
Cameras

Neighbour
Cameras

Frames Duration

Office building 600 3 6 20.3k 1 h (office hours) & 1 h (rush hours)
Teaching building 1,360 4 8 28.4k 2 h (break hours)
Art museum 860 3 6 13.4k 1 h (weekday) & 1 h (weekend)
Holiday hotel 1,120 3 6 14.6k 2 h (intermittently in 5 days)
Shopping mall 2,130 4 8 26.4k 1 h (weekday) & 1 h (weekend)

To acquire the ground truth of localization and tracking, we invite three volunteers to label
the video. They manually recognize the user and localize the user through measured projection
matrices. Specifically, each user on each frame will have a tuple (UID, Loc, ti ), where UID is the ID
of users, Loc is the ground-truth location, and ti represents the timestamp of each frame. Overall,
our label collection contains 45K records.

7 PERFORMANCE EVALUATION

7.1 Evaluation Methods

We evaluate the performance of iMAC in three fields.
First we evaluate the self-calibration performance of ambient cameras. Since original cameras

and neighbour cameras are calibrated through different approaches, they are analyzed separately.
We use the classic precise chessboard calibration method in Reference [36] as the control group.
We contrast calibration error of rotation and translation respectively.

Then we test overall localization accuracy of iMAC and compare its performance with three dif-
ferent representative indoor localization fusing surveillance cameras observation or mobile camera
observation:

• RAVEL [19]: RAVEL is a generic vision+radio tracking framework, which fuse visual signals
from surveillance cameras and WiFi radio signals and is the first article that proposes a
practical solution of radio-aided visual tracking.

• PHADE [3]: PHADE is a recent vision+sensor tracking framework, which relies on surveil-
lance cameras viewing user’s motion patterns, and compares the uniqueness of these pat-
terns with the patterns extracted from user’s IMU data.

• iVR [30]: iVR is a most recent vision+radio+sensor tracking framework, which combines
observations from surveillance cameras, WiFi radio signals and IMU data and outperform
the state-of-the-art system.

• ClickLoc [29]: ClickLoc is a typical high accurate localization system integrating mobile
cameras and IMU signals from the smartphone.

In the end, we focus on evaluating tracking success rate. Since tracking success rate is the main
influence factors of localization based on ambient cameras. If tracking successfully, then the lo-
calization accuracy depends on projection accuracy of ambient cameras, which depends on cali-
bration accuracy of ambient cameras. If tracking incorrectly, then it will result in a large bias in
localization. During this period, we introduce a classic vision-based object tracking system [40]
as a contrast, which is a robust collaborative model accounting for drastic appearance change
especially occlusion problem.
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Fig. 10. Evaluation of automatic camera calibration.

• SDC&SGM [40]: A robust appearance model that exploits both holistic templates and local
representations, which develops a sparsity-based discriminative classifier (SDC) and a
sparsity-based generative model (SGM).

7.2 Performance of Pose Estimation

As mentioned before, automatically acquiring camera external parameters without human inter-
vention is a basic premise of all localization schemes based on ambient cameras. We first test the
calibration accuracy of original cameras. We choose eight ambient cameras in each scenario and
calibrate 40 original cameras automatically in total.

7.2.1 Original Cameras Calibration. Figure 10(c) illustrates that our method achieves similar
accuracy in total compared with Zhang’s [36] standard result. Concretely speaking, our method
achieves better performance in rotation calibration (Figure 10(b)) in most scenarios and outper-
form Zhang’s output by 0.5◦ on average. Meanwhile, it achieves worse performance in translation
calibration (Figure 10(a)) in most scenarios. It is because the corresponding points we take in our
method is far from the original camera and far apart from each other. But the corresponding points
on Zhang’s standard chessboard are much closer to the original camera and close to each other.
Although the error of world coordinates of our corresponding points is larger than that of Zhang’s
corresponding points. It induces worse performance in the translation calibration but little influ-
ence in the rotation calibration.

Meanwhile, our method performs better accuracy in the holiday hotel. Since the holiday hotel
has more regular texture especially in the area of guest corridors, which offers more corresponding
points for calibration.

Eventually, our method achieves roughly the same performance in average projection accuracy
compared with Zhang’s (Figure 10(c)). Moreover, our result is more stable in each scenario, since it
has a smaller range of waving. The rationale behind is rotation accuracy becomes more influential
to projection than translation accuracy, when the distance between point and camera grows. And
as expected, our method performs the best in the holiday hotel, which even outstands Zhang’s by
nearly 40%.
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Fig. 11. Relationship between projection accuracy and number of pedestrians.

7.2.2 Neighbour Cameras Calibration. Afterwards, we evaluate the performance of neighbour
cameras calibration. Compared with original camera (Figure 10(d)), the average projection error
of neighbour camera is about 0.1 m larger since the cumulative error. Since pedestrians offer the
key points that play a decisive role in calibration, Figure 11 analyzes the relationship between
projection accuracy and the number of pedestrians. Although the projection produces large errors
at the first three pedestrians, it becomes narrow and stable with the increase of pedestrians and
ultimately stabilizes after 10 pedestrians. As a result, we only list neighbour cameras in a white
list after being calibrated by more than 20 pedestrians.

Although we obtain precise calibration results on original cameras, cumulative error will be
transmitted to every next neighbour camera. Figure 10(d) analyzes this cumulation through in-
creasing layers of neighbour cameras. According to observation, the projection error is linearly
proportional to the layers of neighbour cameras in topology structure. And the fourth layer of
nighbour camera still has an acceptable projection error in 1 m. In practise, an uncalibrated camera
may connect to different original camera through distinct routines. Thus, this camera will engen-
der multiple calibration results derived from different original cameras. Fortunately, this regularity
directs us to adopt projection result from neighbour camera, which is closer to an original camera
in topological relationship.

On the whole, we accomplish a reliable solution to self-calibrate the global cameras that has
similar accuracy to Zhang’s standard results. Although Zhang’s method has been a flexible and
convenient calibration method, it still costs us about half an hour and two professional volunteers
to calibrate each camera on average. Since Zhang’s method only offers calibration result in co-
ordinate of chessboard. It induces additional labor and bias to manually calibrate the location of
chessboard. By comparison, our method leverages a zero-cost and effective method to calibrate
ambient cameras and help construct the indoor projection map.

7.3 Performance of Localization

7.3.1 Overall Comparison. Compared with three other state-of-the-art indoor localization sys-
tems, iMAC achieves the best performance in overall accuracy (in Figure 12(a)). The average local-
ization accuracy of iMAC is 0.68 m, which surpasses iVR by 34.7%, PHADE by 76.2%, ClickLoc by
77.4%, and RAVEL by 83.4%.

In ambient-camera-based systems, it is noteworthy that WiFi, IMU, and vision make different
contribution to the final performance. Basically, WiFi plays a fundamental role to offer a rough
localization, which obtains 3- to 5-m precision and avoids excessive outliers. IMU plays a definitive
role in distinguishing pedestrians in proximate space, which differ in the shape of trajectory. That
is why RAVEL has better result (6 m) in maximum error than PHADE (7 m), although it performs
worse in average accuracy. iVR integrates the advantages of both IMU and WiFi to achieve an
overall better localization system. On this basis, iMAC replaces WiFi fingerprints with instant
visual geometry fingerprints, which performs more accurately, in real time, and at low cost.
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Fig. 12. Evaluation of localization and tracking: (a) Overall location accuracy comparison with state-of-the-

art systems. (b) Location accuracy in different public scenarios. (c) Comparison of overall tracking success

rate in different public scenarios. (d) Influence to tracking success rate from number of pedestrians. (e) Per-

formance comparison of different sampling time for retracking. (f) Performance comparison in complex sce-

narios with multiple static pedestrians. (g) Performance comparison between hand-held and stable mobile

cameras in complex scenarios. (h) Performance comparison bewteen different rotation of the mobile camera

in three typical scenarios.

In mobile-camera-based systems, location accuracy depends on visual recognition of landmark.
Once fails in recognition, ClickLoc will degenerate into WiFi-based localization. Thus, ClickLoc has
a better performance than RAVEL in average accuracy but performs as bad as PHADE in maximum
error. iMAC leverages ambient cameras to enhance accuracy and significantly surpasses ClickLoc
in average accuracy and worst accuracy.
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For above reasons, iMAC attains outstanding location performance through fusing ambient cam-
era and mobile camera and acquires better accuracy without human efforts.

7.3.2 Performance in Different Scenarios. To meticulously evaluate iMAC, Figure 12(b) depicts
location accuracy in different scenarios. The 80-percentile error in each scenario is within 2 m,
meaning iMAC has better performance in different environments. Among them, teaching building,
holiday hotel and office building contribute better average accuracy, which are 0.65, 0.68, and
0.74 m, respectively. However, art museum and shopping mall contribute slightly worse average
accuracy, which are 1.22 and 1.31 m. According to our observation, visual occlusion is the primary
cause of the drop in accuracy. Complexity of crowd and environment still makes negative influence
to some degree.

Basically, iMAC resists the striking disparity between diverse scenarios and achieves an accept-
able accuracy in all scenarios.

7.4 Performance of Tracking

7.4.1 Overall Success Rate. Since iMAC, iVR, PHADE are recent indoor localization systems
drawing in surveillance cameras, we further analyze the success rate of tracking. For better un-
derstanding, we add a classical visual tracking algorithm (SDC&SGM [40]) into comparison. Fig-
ure 12(c) depicts the comparison in three distinct scenarios. Significantly, iMAC, iVR, and PHADE
all achieve better success rate and higher robustness than SDC&SGM, which proves combining
surveillance video and mobile sensors is a promising way to enhance and promote indoor localiza-
tion and tracking.

Moreover, iMAC achieves the highest rate in each scenario and shows high robustness, keeping
more than 90% success rate regardless of environments. Meanwhile, iVR gains slightly inferior
success rate (in 4%) in teaching building and holiday hotel, which is slightly superior (in 6%) than
that of PHADE. However, both iVR and PHADE have a more significant drop of success rate in art
museum than that of iMAC. Although all these visual tracking algorithms suffer from visual occlu-
sion, iMAC still wins a relative robustness in complex environment by adopting instant geometry
features.

Thus, ICFM is demonstrated to have better performance and robustness than using WiFi finger-
prints in tracking people in real scenarios. It is remarkable that iMAC gets rid of human intervening
in map construction, collecting radio fingerprints and calibrating ambient cameras.

7.4.2 Number of Pedestrians. Obviously, the number of pedestrians influences the visual pro-
cessing and disturbs tracking scheme. We further test the influence of multiple pedestrians in
iMAC, which is shown in Figure 12(d).

iMAC achieves the best success rate when there are different number of pedestrians under the
camera, which is 97%, 95%, 93%, and 88% for 4, 8, 12, and 16 pedestrians, respectively. iVR also
shows high accuracy over 90% within 8 pedestrians, which precipitately drops down to 70% when
there are 16 pedestrians. Worse still, PHADE drops down to less than 60% when the number of
pedestrians is 16. Although all three methods degenerate with the increase of pedestrians, which
induces visual occlusion. iMAC shows significantly better resistance against scenarios with more
pedestrians.

Previous solutions depend on WiFi and IMU data and will lose efficacy when more pedestrians
appear with similar trajectory and close location. Thus, their accuracy will deteriorate precipitately,
which put those location-based indoor smart application out of commission. However, the increase
of pedestrians meanwhile brings more complex geometry features of crowds, which offers rich
discrimination for ICFM module and benefits iMAC in crowded public areas.
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As a result, iMAC achieves better advantages in scenarios with multiple pedestrians, which are
insurmountable for all previous methods.

7.4.3 ReTracking Delay. We also concern the time cost for one-time tracking, since it has quite
an influence on retracking and relocation. As shown in Figure 12(e), iMAC shows stably excellence
success rates, which is 95%, 92%, 90%, and 85% when sampling time is set to 7 s, 5 s, 3 s, and 1 s
respectively. iVR performs an equally better rate, which is 92% and 90% in 7 s and 5 s. However,
iVR drops down to 82% and 72% when sampling time reduces to 3 s and 1 s. Worse still, PHADE
faces this drop (78%) even earlier when sampling time reduces to 5 s. Eventually, PHADE reaps an
unacceptable success rate (51%) when sample time is compressed to 1 s.

The above results verify that iMAC keeps an effective performance in each short sampling. Thus
it proves ICFM is a highly discriminable real-time model compared with IMU driven model. Since
the latter depends on trajectory difference over a period of time, which costs more time to achieve
a high accuracy as stable as iMAC. iVR alleviates this shortage by fusing WiFi signals into consid-
eration. However, the improvement of fusing WiFi signals is also limited to a short time slice. For
instance, normal human walks about 1.2 m per second in a relaxed state [1], which is within the
location error engendered by WiFi signals.

iMAC performs extraordinary speed in retracking, which enables users to gain precise location
as soon as they pick up their smartphones.

7.4.4 Static Pedestrian. Pedestrians regularly slow down or halt their steps in public areas like
art museum or shopping mall. We evaluate the performance of iMAC in scenarios with multiple
static pedestrians. Concretely, we set different number of static pedestrians and set one of them as
a user. The result is shown in Figure 12(f).

iMAC shows overwhelming advantages in distinguishing different static pedestrians, achieving
over 90% regardless of numbers of pedestrians. Although iMAC, iVR, and PHADE all achieve high
success rate when there is only one static pedestrian. iVR suffers from multiple static pedestrians,
which soon linearly decreases to below 49% when there are eight static pedestrians. Worst of
all, PHADE performs like a random selection algorithm. The rational is IMU module becomes
completely out of action when there are multiple static pedestrians. Due to the same reason, iVR
performs relatively better, since WiFi module still makes efforts to offer a rough difference in
location.

Compared with state-of-the-art systems, iMAC overcomes difficulties in dealing with scenarios
with multiple static pedestrians, which is very common in public areas.

7.4.5 Shake of the Mobile Camera. Due to movements and limb shaking, hand-held mobile cam-
eras will keep shaking, which results in unavoidable image jitter. Those image jitter will disturb
the pixel position of pedestrians in the image in the consecutive frame pairs. To evaluate the influ-
ence caused by hand shake, we use a handheld gimbal stabilizer to stabilize the mobile camera as
a control group. And we test iMAC in all five different scenarios and compare the performance of
this two modes. The result is shown in Figure 12(g).

Overall speaking, the shake of the mobile camera has very limited influence to the tracking
result of iMAC. Concretely speaking, the tracking success rate of the hand-held mobile camera
is lower than that of the stable mobile camera by around 2% in different scenarios. Furthermore,
we find this little defect will be soon made up once we wait for several seconds. Since several
additional match will be enough to eliminate the influence and target the right person.

Analyzing theoretically, iMAC adopts angles but not locations as the description of the pedes-
trian, which hardly suffers from the image jitter caused by the shake of the mobile camera. Since
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according to the monocular vision model in Figure 7, the required angle only depends on the ab-
solute location of the two reference pedestrians but no other factors.

Thus, there is no need to deliberately stabilize your mobile camera when using iMAC system,
which makes it more convenient and user-friendly.

7.4.6 Rotation of Mobile Cameras. Besides the shake of the mobile camera, the rotation of the
mobile camera also influences the content of the image and thus influences the performance of
iMAC system. However, it is an anti-human design to require the users of iMAC to keep their
mobile devices perpendicular to the ground from beginning to end. Thus, we evaluate the influence
caused by the rotation of the mobile camera and try to give some advices to our users. We set the
mobile camera in several fixed angels and test iMAC in three typical scenarios including an art
museum, a teaching building and a shopping mall. The result is shown in Figure 12(h).

Overall speaking, the rotation of the mobile camera has an increasing influence to the tracking
performance with the degree of rotation. Concretely speaking, the rotation has limited damage to
iMAC when the degree of rotation is less than 15◦. But with the rotation growing, the performance
of iMAC rapidly deteriorates and becomes out of use. Hence a substantial rotation will make iMAC
unavailable to the users. In the experiments, we find the mobile camera will gradually lose the sight
of the reference pedestrians with the rotation, which finally leads to the system failure. However,
once the mobile camera recovers the limited rotation degree, iMAC will soon go back to work and
offer precise service. Theoretically analyzing, iMAC depends on recognizing reference pedestrians
to localize the user, which requires enough reference pedestrians appear in the mobile camera’s
sight and able to be detected by mature CV algorithms.

Thus, we advice our users to maintain their mobile cameras approximately 75◦ to 90◦ or roughly
facing the surrounding pedestrians, which makes iMAC system able to offer stable and precise
service.

8 RELATED WORK

iMAC is the first work to combine mobile cameras and ambient cameras. Here we list most recent
works related to our work.

8.1 Mobile-camera-based Localization

Vision has higher resolution than WiFi kind of radio signals and IMU signals, several existing
works leverage mobile camera to improve performance of location service.

OPS [17] integrates GPS, inertial sensors and multiple images of a same object to furnish an
outdoor object localization system. Sextant [24] leverages environmental physical features from
inertial sensors and mobile cameras to triangulate user locations using at least three photos. Click-
Loc [29] fuses the advantages of mobile cameras, WiFi fingerprints and IMU signals to achieve
an easy-to-use image-based indoor localization system with multi-modal sensing. Travi-Navi [38]
and Pair-Navi [7] both provide trace-driven navigation on smartphone. Travi-Navi records high-
quality images and sensor readings during a guider’s walk on the navigation paths. The followers
track the navigation trace, get prompt visual instructions and image tips. Pair-Navi exploits vi-
sual SLAM based on mobile cameras to achieve a real-time P2P navigation without help of other
sensors in smartphone.

8.2 Ambient-camera-based Localization

Researchers integrate images from ambient cameras, radio signals and IMU signals to achieve
higher accuracy.
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RAVEL [19] and EV-Loc fuses visual signals from surveillance cameras with WiFi radio signals
for higher location accuracy. Reference [11] combines visual signals from surveillance cameras and
sensors signals from IMU to achieve robust pedestrian tracking. Shortly afterwards, PHADE [3]
extracts uniqueness patterns of users in surveillance cameras and compares these patterns with
user’s IMU data to discern different users. Most recently, iVR [30] designs a tightly coupled fusion
algorithm to exploit advantages of visual signals, IMU signals and WiFi signals, which outperforms
previous systems in accuracy and performs more robust in multi-pedestrian scenario.

8.3 Easing Start-up Effort

Indoor floor plan construction has been a major bottleneck for image-based localization, which
is time-consuming and labor intensive. Tango [18] reconstructs 3D indoor structure in real time
fusing a depth camera and extra motion capture sensors. Jigsaw [9] using SfM to construct a 2D
floorplan with commodity smartphones by carefully designed “Click-Walk-Click” model. Indoor-
Crowd2D [5] integrates mobile cameras and inertial measurements to construct building interior
skeleton. ClickLoc [29] reduces the overhead of image database by correlating image-generated
relative models to physical coordinates. iVR [30] further reduces human intervention leveraging
two ambient cameras to construct an indoor semantic map.

9 CONCLUSIONS

In this article, we present iMAC, a robust sub-meter accuracy indoor localization and navigation
system that fuses observation from mobile cameras and ambient cameras. By integrating observa-
tion from two sub-modules, iMAC finally overcomes their respective bottlenecks of heavy start-up
efforts and calibration efforts and achieves enhanced accuracy and robustness. iMAC is imple-
mented on several commercial smartphones in different scenarios to validate its performance. The
result demonstrates that iMAC shows the light of offering universal indoor location service and
becoming a practical indoor navigation system without human effort.
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