
1

Taming Event Cameras with Bio-Inspired
Architecture and Algorithm:

A Case for Drone Obstacle Avoidance
Danyang Li∗, Student Member, IEEE, Jingao Xu∗, Member, IEEE, Zheng Yang†, Fellow, IEEE,

Yishujie Zhao, Hao Cao, Student Member, IEEE, Yunhao Liu, Fellow, IEEE,
Longfei Shangguan, Member, IEEE

Abstract—Fast and accurate obstacle avoidance is crucial to drone safety. Yet existing on-board sensor modules such as frame
cameras and radars are ill-suited for doing so due to their low temporal resolution or limited field of view. This paper presents
BioDrone, a new design paradigm for drone obstacle avoidance using stereo event cameras. At the heart of BioDrone are three simple
yet effective system designs inspired by the mammalian visual system, namely, a chiasm-inspired event filtering, a lateral geniculate
nucleus (LGN)-inspired event matching, and a dorsal stream-inspired obstacle tracking. We implement BioDrone on FPGA through
software-hardware co-design and deploy it on an industrial drone. In comparative experiments against two state-of-the-art event-based
systems, BioDrone consistently achieves an obstacle detection rate of >90%, and an obstacle tracking error of <5.8cm across all flight
modes with an end-to-end latency of <6.4ms, outperforming both baselines by over 44%.

Index Terms—Mobile Computing; Drone-based Applications; Obstacle Avoidance; Event Camera; Bio-inspired Design

✦

1 INTRODUCTION

D RONES are among the most disruptive inventions in
the past few years, spawning many novel applications

including aerial imaging [1], [2], [3], last-mile delivery [4],
[5], [6], sky networking [7], [8], and industrial inspection
[9], [10], [11]. Despite their huge market value, safety re-
mains a crucial challenge for drones, particularly for those
high-speed drones in industrial and urban applications.
For instance, DJI’s industrial drones cruise at up to 25m/s
[12], and the relative speed between two Amazon delivery
drones can reach 30m/s [13]. Drone collisions with obstacles
(e.g., birds [14], drones [15]) will not only cause financial loss
but also threaten human safety [16], [17], which sets a strong
barrier for drone adoption.

Fast and accurate obstacle detection and localization
plays a key role in drone obstacle avoidance – the lower
the detection latency, the more time the drone could take to
react; and a higher localization accuracy increases the likeli-
hood the drone can dodge them. Existing solutions primar-
ily rely on frame-based cameras [18], [19] and radars [20],
[21]. However, the low spatial-temporal sampling resolution
of these on-board sensors makes it challenging for drones to
perceive obstacles timely or localize them accurately.

For instance, the sampling interval of a typical frame-
based camera varies from 20ms to 50ms, during which
an obstacle can move up to 40cm (given a 20m/s relative
speed). As a result, we are expected to see severe motion

• A preliminary version of this article appeared in International Conference
on Mobile Computing and Networking (ACM MobiCom 2023)

• Danyang Li, Jingao Xu, Zheng Yang, Yishujie Zhao, Hao Cao, and
Yunhao Liu are with the School of Software and BNRist, Tsinghua
University, Beijing, China, 100084.
E-mail: {lidanyang1919, xujingao13, hmilyyz, chillpill995, nyz1500,
yunhaoliu}@gmail.com

• Longfei Shangguan is with the Department of Computer Science, Univer-
sity of Pittsburgh. E-mail: longfei@pitt.edu

• ∗Danyang Li and Jingao Xu are co-primary authors
• †Zheng Yang is the corresponding author

Drone

Obstacle

Stereo Event Camera

LiDAR

Depth

Camera

Frame-based

Camera

Event Stream Gray Image

Obstacle

(a) (b)

(c) (d)

Obstacle

Drone

(a) An obstacle shows up

Drone

Obstacle

Stereo Event Camera

LiDAR

Depth

Camera

Frame-based

Camera

Event Stream Gray Image

Obstacle

(a) (b)

(c) (d)

Obstacle

Drone

(b) The industrial drone platform

Drone

Obstacle

Stereo Event Camera

LiDAR

Depth

Camera

Frame-based

Camera

Event Stream Gray Image

Obstacle

(a) (b)

(c) (d)

Obstacle

Drone

(c) A comparison of captured event stream and ordinary gray image
(without versus with obvious motion blur)

Fig. 1. Snapshot of an obstacle avoidance maneuver.

blurring on each image (Fig.1c). Such motion blurring will
fail the vision algorithms, impairing both obstacle detection
and localization accuracy. The radar-based solutions, on the
other hand, suffer from high miss detection rates due to
their limited field of view (FoV) [22], [23].
Drone obstacle avoidance with event cameras. Event cam-
eras, inspired by biological vision systems, asynchronously
report pixel-level intensity changes. Endowed with mi-
crosecond resolution, event cameras are able to capture
high-speed motions without blurring (Fig.1c). Hence event
cameras are envisioned to be an ideal solution to challenging
vision tasks such as high-speed motion tracking [24], [25],
and simultaneous localization and mapping (SLAM) [26].

To better understand the potential of event cameras for
obstacle avoidance, we reimplement event-based systems

2

In
te

n
s
it
y
 L

e
v
e

l

Time𝑡0

E
v
e

n
ts

Time

Threshold 𝑪

𝑡𝑘−1 𝑡𝑘

𝐼𝑘−1

𝐼𝑘

Positive Events

Negative Events

𝑢

𝑣

Motion Blur

Slow

Rotation

Fast

Rotation

T
im

e

Standard Camera Event Camera

Positive

Events

Negative

Events

R
e
la

ti
v
e
 D

is
ta

n
c
e

Timeline
𝑡0 𝑡1 𝑡2

Δ𝑡𝑝 Δ𝑡𝑐

Localization Phase Action Phase

𝑥𝑙

ො𝑥𝑙

Safety Distance

Fig. 2. Illustration of Obstacle Avoidance

In
te

n
s
it
y
 L

e
v
e

l

Time𝑡0

E
v
e

n
ts

Time

Threshold 𝑪

𝑡𝑘−1 𝑡𝑘

𝐼𝑘−1

𝐼𝑘

Positive Events

Negative Events

𝑢

𝑣

Motion Blur

Slow

Rotation

Fast

Rotation

T
im

e

Standard Camera Event Camera

Positive

Events

Negative

Events

R
e
la

ti
v
e
 D

is
ta

n
c
e

Timeline
𝑡0 𝑡1 𝑡2

Δ𝑡𝑝 Δ𝑡𝑐

Localization Phase Action Phase

𝑥𝑙

ො𝑥𝑙

Safety Distance

Fig. 3. Principle of Event Camera

In
te

n
s
it
y
 L

e
v
e

l

Time𝑡0

E
v
e

n
ts

Time

Threshold 𝑪

𝑡𝑘−1 𝑡𝑘

𝐼𝑘−1

𝐼𝑘

Positive Events

Negative Events

𝑢

𝑣

Motion Blur

Slow

Rotation

Fast

Rotation

T
im

e

Standard Camera Event Camera

Positive

Events

Negative

Events

R
e
la

ti
v
e
 D

is
ta

n
c
e

Timeline
𝑡0 𝑡1 𝑡2

Δ𝑡𝑝 Δ𝑡𝑐

Localization Phase Action Phase

𝑥𝑙

ො𝑥𝑙

Safety Distance

Fig. 4. Comparison of Different Camera

[23], [27], [28], [29], [30], [31], [32] and evaluated their
performance. Our benchmark studies (§2.2) reveal that these
systems face fundamental challenges in high-speed drone
flight scenarios, as detailed below.
• Event burst impairs drone obstacle detection. Event
cameras are hyper-sensitive to environmental change. For
instance, a slight change in lighting can lead to a remarkable
change in pixel-wise intensity, resulting in hundreds of
event reports. In practice, the scene in the camera’s view
changes rapidly due to drone movement; thus we will see an
event burst where thousands of events are reported within
a short time and obstacle-triggered events are easily buried
by massive numbers of environment-triggered events.
• Event sticking delays drone obstacle localization. Con-
ventional vision algorithms are designed for frame-based
cameras and cannot be directly applied to event streams for
obstacle localization because the output of an event camera
is not an image but a stream of asynchronous events. To
address this issue, the current practice periodically sticks a
lot of scattered events into a compact image and applies
image-based algorithms (e.g., stereo triangulation [33] or
deep neural networks [27], [28], [30], [31]) that are both com-
putationally demanding. Repeating these operations would
cause significant delays in obstacle localization.

Although existing solutions (e.g., Baseline-I [23]) achieve
high obstacle detection accuracy by using a monocular event
camera. The obstacle localization performance, however,
drops significantly in high-speed scenarios (i.e., 20m/s) due
to the increasing task complexity and growing data volume.

Given that the event camera is a kind of bio-inspired
vision sensor, we ask a question: Could we tackle the above
challenges by studying how animals process binocular vi-
sual signals for efficient obstacle localization? To answer
this question, we resort to bionics and take a compre-
hensive study (§3.1) on (i) how binocular visual signals
are transmitted from the retina to the visual cortex in the
mammalian visual system; and (ii) how they are rapidly
filtered, matched, and spatio-temporal corrected through
the visual pathway.
Our Work. In this paper, we leverage the Biological lessons
learned from mammalian visual system and propose Bio-
Drone, a Drone-oriented obstacle avoidance system. Bio-
Drone features three key designs to fully unleash binocu-
lar event cameras’ potential for obstacle localization. It is
implemented on FPGA by software-hardware co-design, in-
corporating on-chip intelligence [34], [35], as detailed below.
• On system architecture front, we imitate how mammal’s
visual pathway processes binocular visual signals and pro-
pose a visual-pathway-inspired signal processing pipeline
for binocular event streams. Unlike the current practice
where event streams are processed separately and not fused

until the final triangulation stage, BioDrone fuses binocular
event streams at an early stage, enabling the subsequent
event filtering, matching, and localization modules to take
full advantage of binocular information (§3.3).

• On system algorithm front, we first introduce a Chiasm-
inspired Event Filtering (CEF) algorithm to quickly filter
out environment-triggered events from the massive amount
of events with a very low false positive rate (§4.1). We
then propose a Lateral Geniculate Nucleus (LGN)-inspired
Event Matching (LEM) algorithm to determine the obstacle
spatial location using a unique spatio-temporal event repre-
sentation (§4.2). Moreover, we implement a Dorsal stream-
inspired Obstacle Tracking (DOT) algorithm, which adeptly
balances historical states with real-time observations to op-
timize obstacle trajectory and predicts its location (§4.3).

• On system implementation front, we implement BioDrone
on a commercial Xilinx Zynq-7020 [36] chip. We design
exclusive logic circuits, on FPGA, to parallelize the pixel-
wise event processing, expediting the software stack (§5).

We deploy BioDrone on a drone testbed and further
integrate it into ArduPilot [37], a widely-used open-source
drone flight controller. We conduct extensive experiments
with various types of obstacles and in different flying speed
settings both indoors and outdoors. We compare the end-
to-end obstacle localization accuracy and latency of Bio-
Drone with two state-of-the-art (SOTA) event camera-based
drone obstacle avoidance systems Baseline-I [23] (Science
Robotics’20) and Baseline-II [29] (IROS’18). Evaluation re-
sults show that BioDrone achieves >90% obstacle detection
rate across all fight modes, outperforming both baselines
by >10%. BioDrone further achieves <5.8cm tracking error
with <6.4ms latency, outperforming baselines by >44%.

In summary, this paper makes following contributions.

(1) We systematically study both the conventional sensor-
and event camera-based drone obstacle avoidance systems,
and reveal the fundamental limitations of these solutions.

(2) We design various bio-inspired components in BioDrone
to unleash the potential of event cameras for obstacle avoid-
ance, including a human visual pathway-inspired event
processing architecture, a chiasm-inspired event filtering
module, a LGN-inspired event matching mechanism, and
a dorsal stream-inspired obstacle tracking algorithm.

(3) We fully implement BioDrone through software-
hardware co-design and deploy it on an industrial drone,
conducting a head-to-head comparison with two SOTA
systems. The evaluation results show the feasibility and
efficiency of BioDrone to realize fast obstacle avoidance for
high-speed drones.

3

(a) Event Generating Speed

1 2 3
#Flight Mode

0%

20%

40%

60%

80%

100%

De
te

cti
on

 S
uc

ce
ss

 R
at

e
(%

)

Baseline-I
Baseline-II

(b) Obstacle Detection Rate

I-2 II-2 I-3 II-3
System - #Flight Mode

0%

20%

40%

60%

80%

100%

Ev
en

t F
ilte

rin
g

Ra
te

 (%
) Recall

Precision

(c) Event Filtering Rate

Baseline-I Baseline-II YOLE Nam et al.
Approach

0

20

40

60

80

La
te

nc
y (

m
s)

Baseline
DNN Inference
Event Sticking
Visual Localization

0

5

10

15

20

25

30

Lo
ca

liz
at

ion
 E

rro
r (

cm
)

(d) Localization Accuracy-Latency
Fig. 5. Performance of existing event-based solutions at different translation and rotation speed settings.

2 MOTIVATION

2.1 Drone Obstacle Avoidance Primer
As illustrated in Fig.2, obstacle avoidance consists of local-
ization and action two phases. During the localization phase,
suppose an obstacle shows up abruptly at t0 and is per-
ceived by a drone at t1 after a perception delay ∆tp. Upon
detecting the obstacle, the drone takes ∆tc to localize the
obstacle. Noting that the drone still follows its planned
trajectory to move before localizing the obstacle at t2. Af-
terward, the on-board flight controller changes the drone’s
trajectory to dodge the obstacle (i.e., keep a safe distance
from it) in the action phase.

Both the localization delay (∆tl = ∆tp + ∆tc) and
localization error (∆x = x̂l−xl) are crucial to drone obstacle
avoidance. A long delay ∆tl leaves the drone very short
time to react, and a large localization error ∆x misleads
the flight controller to execute a wrong obstacle avoidance
maneuver. For instance, as depicted by the red dotted line
in Fig.2, evasion commands issued by the flight controller
based on the inaccurate localization result x̂l cannot make
the drone dodge the obstacle (with its real location at xl)
successfully. To ensure the success of collision avoidance
in high-speed scenarios, it is crucial to minimize both the
localization delay ∆tl and action bias ∆x.

2.2 Event Camera for Obstacle Avoidance
Event cameras are bio-inspired sensors that work differently
from frame-based cameras. Instead of capturing images at a
fixed rate, an event camera measures per-pixel brightness
changes asynchronously, resulting in a stream of events at
microsecond resolution [26].
Principle of Event Camera. Event cameras feature intel-
ligent pixels, akin to photoreceptor cells in retinas, that
independently trigger events. When a pixel detects a change
in intensity, it generates an event ek = (xk, tk, pk), which
records the trigger time tk, the pixel’s spatial location
xk = (u, v), and the polarity pk, indicating whether the
intensity change is towards brighter or darker. Specifically,
as shown in Fig.3, let tk−1 be the last time an event was
triggered at pixel xk, with Ik−1 as the intensity at that
time. A new event is triggered at time tk when the intensity
difference ||Ik−Ik−1|| exceeds a threshold C . Fig.4 compares
event cameras with conventional cameras. Unlike conven-
tional cameras, which capture frames at a fixed rate and
suffer from motion blur, event cameras continuously output
brightness changes as a stream of events in space-time.
Opportunities and challenges. Compared with frame-
based camera and radar, event camera is a natural choice
for obstacle avoidance due to the following advantages: (i)
their high temporal resolution allows an extremely low per-
ception delay (i.e., microsecond-level ∆tp), enabling motion

blur-free measurements as opposed to frame-based cameras;
and (ii) the output of event camera is sparse compared
to an entire frame captured by a conventional camera,
resulting in lower processing delay (lower ∆tc). Exploiting
these properties, some previous works investigated the use
of stereo event cameras to track obstacles for drones [23],
[32]. However, the high speed (i.e., both translation and
rotation speed) of drones brings new issues that challenge
the obstacle avoidance performance:
• C1: Event burst impairs drone obstacle detection.
Events captured by an event camera can be classified
into two categories: environment-triggered and obstacle-
triggered events. The former is generated due to the ego-
motion of the event camera, while the latter is caused by
the appearance of obstacles. To detect and further localize
an obstacle, a system needs to identify obstacle events
from massive events. To this end, existing solutions apply
IMU-based ego-motion compensation algorithms to filter
out environment-triggered events [23], [26], [29]. However,
as shown in Fig.5a, the number of events generated per
millisecond surged from around 300 to 1,500 and the new
additions are mainly environment events. Such a burst
of environmental events overwhelm obstacle events and
degrade existing algorithms’ performance.

To validate the above analysis, we conduct an obsta-
cle detection experiment under different flight modes. As
shown in Fig.5b, the detection rate of two SOTA solutions,
Baseline-I [23] and II [29], drops to < 60%. To better un-
derstand the reasons for failure cases, we further examine
the event filtering performance of these two baselines in
two high-speed flight modes (i.e., mode 2 and mode 3). We
observe that both systems achieve a very low event filtering
rate (recall and precision < 60% in Fig.5c), which confirms
our analysis.
• C2: Event sticking delays drone obstacle localization.
Once the obstacle is detected, the drone has to localize it
in 3D space. Typically, localization is more time-consuming
than detection due to the additional operations involved.
For instance, Baseline-I requires binocular parallax opti-
mization, matching, and triangulation after detection, which
is more computationally intensive as outlined in [23].

Moreover, conventional vision algorithms (e.g., stereo
triangulation [33]) or DNNs cannot be directly applied as
the output of an event camera is not fix-rate frames but
a stream of asynchronous events. To solve this issue, the
current practice proposes to (i) stick all generated events
within a time window (e.g., < 10ms) into an image and
then apply image-based algorithms (Fig.6c); or (ii) design
event data-oriented DNNs (e.g., spiking neural networks
[39]) for object localization. However, as depicted in Fig.5d,
although the localization accuracy is boosted, either the
sticking operations, the stereo visual algorithms, or DNN

4

……

Optic
Chiasm

Visual Cortex

Lateral
Geniculate

Nucleu

Vestibular
Nerve

Optic
Radiations

§4.1 Chiasm-inspired
Event Filtering

Event
Stream

Event
Stream

High Level Visual Tasks

Dynamic
Obstacle

Drone With Stereo Event Cameras

Event Filtering

Event
Stream

Event
Stream

High Level Visual Tasks

Event Sticking

Feature Matching & Localization3D Location

§4.2 LGN-inspired
Event Matching

Flight
Controller

IMU
Retina

Optic
Nerve

(a) (b) (c)

!

"

#
Feature

Extraction

Event Filtering

Event Sticking

Feature
Extraction

(a)

……

Optic
Chiasm

Visual Cortex

Lateral
Geniculate

Nucleu

Vestibular
Nerve

Optic
Radiations

§4.1 Chiasm-inspired
Event Filtering

Event
Stream

Event
Stream

High Level Visual Tasks

Dynamic
Obstacle

Drone With Stereo Event Cameras

Event Filtering

Event
Stream

Event
Stream

High Level Visual Tasks

Event Sticking

Feature Matching & Localization3D Location

§4.2 LGN-inspired
Event Matching

Flight
Controller

IMU
Retina

Optic
Nerve

(a) (b) (c)

!

"

#
Feature

Extraction

Event Filtering

Event Sticking

Feature
Extraction

(b)

……

Optic
Chiasm

Visual Cortex

Lateral
Geniculate

Nucleu

Vestibular
Nerve

Optic
Radiations

§4.1 Chiasm-inspired
Event Filtering

Event
Stream

Event
Stream

High Level Visual Tasks

Dynamic
Obstacle

Drone With Stereo Event Cameras

Event Filtering

Event
Stream

Event
Stream

High Level Visual Tasks

Event Sticking

Feature Matching & Localization3D Location

§4.2 LGN-inspired
Event Matching

Flight
Controller

IMU
Retina

Optic
Nerve

(a) (b) (c)

!

"

#
Feature

Extraction

Event Filtering

Event Sticking

Feature
Extraction

(c)

Fig. 6. System architecture comparison. (a) Human binocular visual pathway. (b) BioDrone’s architecture inspired by (a). (c) System architecture of
conventional event-based systems [23], [29], [38], where binocular event streams are processed separately and follow traditional visual localization
workflow (i.e., from feature extraction to matching and then stereo triangulation).

inference introduces significant delays, leaving the drone no
time to react.

In summary, although event cameras hold great potential
for delay-sensitive tasks such as drone obstacle avoidance,
there still lack effective algorithms and system support to
fully unleash their potential.

3 BIO-INSPIRED ARCHITECTURE

Our system architecture and algorithms are inspired by the
biological visual pathway. In this section, we first introduce
the biological visual pathway in mammalian visual system
and describe how visual information is filtered, processed,
and transmitted from retina to brain through the pathway.
We then present the lessons learned and explain how we
leverage these insights to design BioDrone.

3.1 Biological Visual Pathway
As illustrated in Fig.6a, light entering eyes is refracted by the
cornea and lens and then simulates photoreceptor cells on
the retina to produce visual signals. The optic nerves carrying
those visual signals from both eyes cross at the optic chiasm,
which localizes at the base of the hypothalamus of the brain
[40]. Additionally, the vestibular nerves that transmit human
motion information, interact with the optic nerves at the
optic chiasm and select which necessary visual signals will
be further carried forward to the thalamus for subsequent
processing [41]. Afterwards, the filtered visual signals enter
the lateral geniculate nucleus (LGN) are re-organized and
spatio-temporally correlated to achieve a 3D representation
of environment [42]. Subsequently, these integrated visual
representations are transmitted to the visual cortex via the
optic radiations. From there, the dorsal stream extends to
the posterior parietal cortex, traditionally identified as the
”where” pathway due to its role in processing spatial at-
tributes of objects [43].

3.2 Bio-lessons
We’ve learned two biological lessons from visual pathway:
• L1: Early integration of binocular visual signals. Binoc-
ular visual signals are integrated at an early stage (i.e., at
optic chiasm instead of brain). This allows visual signal fil-
tering and matching to take full advantage of the binocular
information. In contrast, current practice [23], [29] process,

filter, and extract visual features from each event stream
independently, as illustrated in Fig.6c.
• L2: Fast processing of low-level visual tasks. Low-level
visual tasks, such as object detection and localization, are
swiftly executed during the signal transmission through the
visual pathway. This involves the binocular visual signals
being filtered at the optic chiasm, matched at the LGN, and
undergoing motion analysis in the dorsal stream. In con-
trast, the visual cortex is dedicated to more complex, high-
level visual tasks like object recognition or segmentation.

3.3 Overview of BioDrone

BioDrone shares a similar architecture with the biological
visual pathway to unleash the potential of event cameras,
as shown in Fig.6b. We explain the functional units below.
• From the architecture perspective, following lesson-L1,
BioDrone features a visual-pathway-inspired signal process-
ing pipeline, fusing binocular event streams at an early
stage, which allows the obstacle detection and localization
tasks to combine and fully leverage the binocular event
information.
• From the algorithm perspective, following lesson-L2,
BioDrone attempts to mimic how optical chiasm, LGN,
and dorsal stream process binocular visual signals and de-
signs three heuristic algorithms. Specifically, BioDrone pro-
poses a Chiasm-inspired Event Filtering (CEF) mechanism
for event filtering and obstacle detection, an LGN-inspired
Event Matching (LEM) module to localize obstacles from
the integrated event stream, and a Dorsal stream-inspired
Obstacle Tracking (DOT) algorithm aimed at optimizing and
predicting the movement of obstacles.

Finally, the resulting obstacle trajectory and predicted
location from DOT will be (i) utilized to direct the flight
controller in executing appropriate evasive maneuvers; (ii)
fed back to CEF to provide a priori information for subse-
quent event filtering.

4 BIO-INSPIRED ALGORITHM DESIGN

In this section, we describe three bio-inspired algorithms
for event filtering (§4.1), event matching (§4.2), and obstacle
tracking (§4.3).

5

Fig. 7. Illustration of the chiasm-inspired event filtering scheme. Left:
the distinction between environment- and obstacle-events under ego-
motion instruction; Right: the binocular constraint that an obstacle
event should satisfy.

4.1 Chiasm-Inspired Event Filtering

Optic nerves carrying visual signals from eyes and vestibu-
lar nerves carrying motion signals from cochleas cross at
optic chiasm. Like a busy intersection, optic chiasm is the
rendezvous point where binocular visual information gets
fused and filtered under the guidance of proprioceptive
motion information. Typically, about 1,200,000 photorecep-
tors on human retina generate visual signals per second,
yet merely around 1,700 of them would pass through optic
chiasm [44].

Motivated by the chiasm’s ultra-efficient signal filtering
performance, we design a chiasm-inspired event filter that
leverages the drone’s IMU perception data (simulating the
vestibular motion signals) to pick up obstacle events in
binocular event streams. The insight behind this mecha-
nism lies in two-fold: (i) IMU could be leveraged to infer
the ego-motion of event cameras, which provides a priori
knowledge to cull environment-triggered events. Just like
in our daily life, when your head is turning right, your
righter visual field becomes clear while the lefter blurs, and
vice-versa; and (ii) the collaborative use of binocular event
streams would further improve the filtering performance as
the spatial relationship (i.e., pose transformation) between
the stereo event cameras provides an additional constraint.
For instance, a single eye is less sensitive to the depth change
of a moving object compared to two eyes.

4.1.1 Event Filtering Based On Ego-motion Instruction

We begin by explaining how events are filtered using the
motion information from IMU sensors. As shown in Fig.7,
consider a batch of events E and IMU data I collected
within a short time window [t0, t0 + δt]. For any event
ei = (xi, ti, pi) occurring within this window, we estimate
its past location x̂0 at time t0 based on the drone’s motion.
There are two scenarios:
• Environment-triggered event. If ei is caused by a stationary
environment feature, its back-projected pixel location x̂0

should align with its location x0 at t0, as the apparent
change is solely due to the drone’s motion.
• Obstacle-triggered event. On the other hand, if ei is triggered
by a moving obstacle, the back-projected location x̂0 will not
match x0, since the projection only accounts for the drone’s
movement and not the obstacle’s motion.

(a) Gray Image (b) Event Stream

(c) Ego-motion Instruction (d) Binocular Constraint

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡
(a) Gray Image(a) Gray Image (b) Event Stream

(c) Ego-motion Instruction (d) Binocular Constraint

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡
(b) Original Event Stream

(a) Gray Image (b) Event Stream

(c) Ego-motion Instruction (d) Binocular Constraint

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡

(c) Filtering w/ Ego-motion

(a) Gray Image (b) Event Stream

(c) Ego-motion Instruction (d) Binocular Constraint

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡

𝑥

𝑦

𝑡

(d) Ultimate Filter Performance

Fig. 8. Step-by-step event filtering performance.

Modeling. To formalize this process, we define the key
variables illustrated in Fig.7. In short time periods, camera
rotation typically generates more events than translation
[23]. Therefore, we primarily focus on compensating for ego-
rotation when filtering events. Each event ei is warped to the
image plane at time t0:

x̂0 = KRiK
−1xi, (1)

where K is the camera’s intrinsic matrix, and Ri repre-
sents the rotation matrix describing the pose transformation
from time ti to t0, provided directly by the IMU. While
localization algorithms (e.g., Kalman Filter) can offer more
accurate motion estimates, we opted for raw IMU data to
maintain real-time performance and minimize accumulated
drift error by using short time windows.

For each pixel x in this image plane, we collect the events
mapped to that location as E ′

x. Then, we construct a time-
image representation by calculating the average timestamp
of the events at each pixel:

Tx =
1

|E ′
x|

∑
E′
x

ti. (2)

Finally, to distinguish between environment-triggered
and obstacle-triggered events, we compute a score ρimu(x)
for each pixel based on the time differences:

ρimu(x) =
Tx − T

δt
, (3)

where T is the average event time over all pixels in the
image. A higher score indicates a greater likelihood that
the event is caused by an obstacle, as opposed to the static
environment.

In the filtering process described, we utilize rotation in-
formation from the IMUs of both the left and right cameras
independently, applying the filtering algorithm to the events
in each view. In Fig.8, we present an example of event
filtering. Fig.8a and Fig.8b show the scene captured by a
conventional camera and the raw event stream from the
event camera, respectively. Fig.8c shows the event filtering
result based on ego-motion instruction.

6

4.1.2 Event Filtering Based On Binocular Consistency

To further enhance the filtering of environment-triggered
events, we introduce a binocular consistency constraint.
The key insight is that a pair of obstacle-triggered events
captured by a rigidly attached stereo camera should satisfy
the epipolar constraint [45].
Modeling. At time ti, let the predicted obstacle location
be P i = (Xi, Yi, Zi), as determined by dorsal stream-
inspired obstacle tracking (detailed in §4.3). The coordinate
of an event eli = (xl

i, t
l
i, p

l
i) from the left camera can be

transformed to the right camera’s frame of reference using:

xr
i = π(T rl, ZiK

−1xl
i), (4)

where T rl is the transformation matrix from left to right
camera, and π : R3 → R2 projects a 3D point P onto the
image plane given a pose transformation T :

π(T ,P) =
1

Z
KTP , P = [X,Y, Z]T . (5)

Due to inherent uncertainties in obstacle localization, we
account for potential errors in the estimated position P i by
considering additional pixels around xr

i along the epipolar
line. Since the event cameras are horizontally aligned and
face the same direction, the epipolar line is horizontal, so the
search area includes pixels xr

i±[δx, 0]T , where δx represents
the uncertainty, typically set to 5 pixels. The consistency
score for each event eli is defined as:

ρbi(x
l
i) = min

tr
|tli − tr|, (6)

where tr is the timestamp of events within the search area
on the right image plane. A smaller ρbi(x

l
i) indicates a

higher likelihood of finding a corresponding event pair,
suggesting that eli is more likely triggered by an obstacle.

4.1.3 Put Together

To produce a better filtering result, we integrate both filter-
ing methodologies, necessitating the normalization of their
respective scores first. Let the normalized scores of ρimu and
ρbi be represented as ρ′imu and ρ′bi, respectively. We then
employ a linear combination of these normalized scores:

ρ(x) = αρ′imu(x)+(1−α)ρ′bi(x), α =
ω

ω + kv
∈ [0, 1], (7)

where v (in m/s) and ω (in ◦/s) are the translational and
rotational speeds of the camera, respectively. The param-
eter k serves as a weight to balance the influence of the
camera’s translational and rotational speed on the filtering
process. A larger k places more emphasis to the transla-
tional component, making the filtering more sensitive to
binocular consistency ρ′bi, while a smaller k shifts the focus
towards ego-rotation instruction ρ′imu. In practice, since
events generated by rotation tend to dominate [23], [29], we
empirically set k = 0.8 to achieve a balanced integration
of both filtering methods. If ρ(x) ≥ τthreshold, the pixel
is classified as part of a moving obstacle; otherwise, it is
considered part of the background. τthreshold is a manually
set threshold, ranging from 0.4 to 0.6 in our configuration. A
higher τthreshold results in more thorough background event
filtering, but setting it too high risks incorrectly discarding
obstacle-related events. The final result of event filtering is
shown in Fig.8d.

= −1

= +1

(a) Event Stacking (b) Polarity Time-Surface(a) Event Sticking
= −1

= +1

(a) Event Stacking (b) Polarity Time-Surface(b) Polarity Time-surface

Fig. 9. Event representation method comparison.

4.2 LGN-Inspired Event Matching

Visual signals passing through the optic chiasm are spatio-
temporally correlated at LGN in order to obtain a 3D repre-
sentation of the object. As shown in Fig.10, the architecture
of LGN is characterized by six distinctive layers. The inner
two layers are magnocellular layers that are responsible for
detecting object motion and size (i.e., coarse feature), while
the outer four layers are parvocellular layers for detecting
the object’s color and contour (i.e., fine details) [42]. Such a
six-layer folding architecture supports a plethora of anatom-
ical calculations without involving those computationally
intensive spatial and temporal correlations.

Inspired by this elegant structure, we propose a neural-
enhanced event matching algorithm, as elaborated below.
• First, we propose a novel event stream representation,
namely polarity time-surface (§4.2.1), that maps the 3D
event stream to the 2D space without sacrificing the valuable
event features. Such a design can expedite feature matching
without hurting the matching accuracy.
• Second, similar to LGN, we propose a six-layer hierarchi-
cal event feature extraction and matching algorithm (§4.2.2)
that can localize the obstacle based on the binocular polarity
time-surface timely and accurately.

4.2.1 Spatio-Temporal Representation of Events

An effective representation of event streams is crucial
for feature extraction and matching. The current practice
sticks consecutive events into an event image every tens
of milliseconds (Fig.9a) and applies conventional vision
algorithms to each event image. However, such a design
discards the rich spatial-temporal information hidden in the
event stream and thus achieves inferior performance.

In BioDrone, we propose a lightweight representation
of event streams, namely, Polarity Time-Surface (P-TS), that
can well retain rich spatio-temporal information. P-TS is a
2D map where each pixel value represents both the po-
larity and timestamp of the event. For instance, as shown
in Fig.9b, the red and blue color indicates two different
polarities of the event while the darkness of the color
shows the time this event being captured. We leverage an
exponential decay kernel to prioritize recent events over
past ones, mirroring how the LGN prioritizes fresh visual
signals over older inputs [42]. Compared to uniform decay,
the exponential decay enhances the pixel gradients at the
most recent event locations, thereby accentuating the spa-
tiotemporal features of the obstacle’s current state in the P-
TS representation. Specifically, for each pixel x = (u, v)T , its
polarity time-surface presentation is formally defined as:

T (x, t) = ρlast(x) · exp
(
− t− tlast(x)

η

)
, (8)

7

magnocellular

parvocellular

Right View

Left View

LGN

H
ie

ra
rc

h
ic

a
l T

S

C
o
n
s
tr

u
c
ti
o
n Search

Down

Down
Scaling

Fig. 10. Illustration of our proposed LEM algorithm.

where tlast(x) and ρlast(x) are the timestamp and polarity of
the event showing up at pixel x; η is the decay rate. The pa-
rameter ρlast(x) provides an additional polarity constraint
for event matching. Compared to the sticked event image
(Fig.9a), the proposed P-TS retains the fine-grained texture
of the obstacle, making it easily distinguishable.

To accelerate the generation of P-TS from event streams,
we adopt two principal strategies: (1) Pixel pruning, focus-
ing solely on pixels experiencing obstacle-related events fil-
tered through CEF, and within the current time window (i.e.,
t− tlast(x) < δt). (2) Hardware acceleration, accomplished
by developing a custom P-TS acceleration module on an
FPGA, facilitating the efficient parallel processing of dense
events within the stream.

In the generation of the P-TS, it is crucial to balance
the size of the time window δt to manage its effect on
both feature matching latency and accuracy. A smaller time
window may lead to excessively sparse events in the P-
TS, resulting in incomplete feature representations (e.g.,
discontinuous obstacle edges), which can reduce matching
precision. Conversely, increasing the time window captures
more complete features but requires longer event accumu-
lation and increases the number of features to be processed,
affecting real-time performance. In our configuration, the
P-TS time window is kept consistent with the filtering algo-
rithm (§4.1.1), with δt = 10ms, to strike a balance between
overall reliability and real-time performance.

The transformation of discrete events into the P-TS
enables spatiotemporal correlations that enhance feature
extraction and matching. While this raises concerns about
potentially compromising the efficiency gained from the
inherent sparsity of event data, the P-TS preserves spa-
tial sparsity by encoding only background-filtered events
within a short time window. As shown in Fig.9b, non-
obstacle pixels (white regions) are excluded from further
processing. Additionally, by encoding multiple events at
the same pixel location into a single temporal feature, the
P-TS significantly reduces both storage requirements and
computational load.

4.2.2 Fast Event Feature Matching
Next, we run a feature extraction and matching on the P-
TS maps for obstacle localization. However, sweeping the
entire P-TS maps for feature extraction and matching would
consume significant amount of time. We thus resort to the
lessons learned from LGN and design a pyramidal P-TS
hierarchy to expedite feature extraction and matching.

On a high level, we build two 3-layer P-TS pyramids
based on the P-TS map obtained from left and right event
streams, respectively, as shown in Fig.10. In the P-TS pyra-
mid, the bottom layer T0 (i.e., the original P-TS map) is
subsampled by a factor of k to obtain the next pyramid level
T1. And T1 is then subsampled in the same way to obtain
T2. We are expected to see a sequence of reduced resolution
P-TS map on the pyramidal P-TS hierarchy, with a growing
reception field. Each pixel on the top layer T2 corresponds
to a reception field of k2×k2. By sweeping the T2 map, we
can essentially reduce the searching space by k4.

Pyramidal P-TS hierarchy generation. Let T l
0 and T r

0 be the
left and right P-TS map, respectively. Without losing gener-
ality, we take the left P-TS map for algorithm description.
We down-sample T0 by a factor of k:

Ti+1(x, t) = Ti(kx− k

2
[1, 1]T , t), (9)

where Ti+1(i ∈ {0, 1}) is the down-sampled P-TS. Each
pixel in Ti+1 represents a k × k region in previous P-TS,
taking the value of the region’s center pixel.

Feature Extraction. In contrast to conventional visual fea-
tures, P-TS based features require a tailored approach that
accounts for event generation characteristics to facilitate
effective matching. We propose a cell operator to enhance
stereo event feature matching, as illustrated by the red block
in Fig.10. This operator comprises four directional segments
(i.e., a horizontal, a vertical, and two diagonal), each span-
ning 9 pixels. This design reflects edge textures of event
from various motion directions, aligning with the principle
of LGN’s magnocellular’s responsiveness to moving edges.

For feature comparison, we compute the Sum of Ab-
solute Differences (SAD) between pairs of cell operators.
Within each operator, pixel scores are uniformly averaged,
providing a measure of feature similarity. This cell operator
accentuates attention to the edge textures of moving objects,
resonating with the innate properties of event cameras and
the characteristics of high-speed moving obstacles.

Feature matching. We perform hierarchical feature match-
ing in a top-to-down direction and coarse-to-fine granularity
(i.e., from T2 to T0). Specifically, the hierarchical matching
process consists of a global (on upper layer) and a local (on
lower layer) two stages.

In the global stage, we initiate an epipolar search on the
downsampled T r

2 to reduce the search scope. For a feature
point xl in the left view, its corresponding match xr in the
right view must fulfill the epipolar constraint:

(xl)TFxr = 0, (10)

where F represents the fundamental matrix. This equation
restricts the search to the epipolar line.

The local stage involves searching within a k×k area on
T r
1 , corresponding to the matched point from T r

2 , and re-
peating this process on T r

0 for finer matching. Once matched
feature points xl and xr are identified, the depth of the point
is calculated as:

d =
f ∗ baseline

disp
, disp = ||xl − xr||, (11)

where f is the focal length and baseline is the distance
between two optical centers.

8

Sensing Module Computation Module Control Module

Qualcomm Snapdragon Flight

Visual-Inertial

Odometry

Zynq-7020 / Jetson TX2

Avoidance

Command

Planning

APM Flight Controller

Position Controller

APM Core

Electronic Speed

Controller

Conventional

Camera

IMU

Stereo Event

Cameras
BioDrone

Execution Module

Motor

(#4)

Motor

(#3)

Motor

(#1)

Motor

(#2)

Fig. 11. Implementation of BioDrone on a drone platform for drone
obstacle avoidance.

4.3 Dorsal Stream-Inspired Obstacle Tracking

The dorsal stream, integral to the visual processing system,
facilitates spatial awareness and action guidance. In obsta-
cle avoidance, it exhibits two key functions: (i) predictive
coding, which leverages current visual and memory-based
information to anticipate the location of obstacles, thereby
aiding action planning, and (ii) neural plasticity, utilizing
accumulated experiences to refine the motion analysis, thus
enhancing the capability of obstacle tracking.

Inspired by the dorsal stream’s efficient features in mo-
tion processing, we introduce a dorsal stream-inspired al-
gorithm for obstacle tracking. This algorithm is designed to
determine obstacle motion states (i.e., location and velocity),
which are essential for drone path planning algorithms (e.g.,
artificial potential field [46], [47]). In alignment with the
dorsal stream’s mechanisms, our algorithm (i) constructs
the motion model of obstacle for predicting its 3D location
and (ii) integrates a gain vector to balance the tracking
stability and responsiveness.

Specifically, we first compute the obstacle’s location in
the camera coordinate system, denoted as pc:

pc = dobsK
−1xc, (12)

where xc is the centroid of the obstacle, and the depth dobs is
determined as the average depth of the closest 10% of pixels
on the obstacle. Then, pc is transformed into pw, which
represents the location in the world coordinate system:

pw = Twcpc. (13)

Here, Twc, the transformation matrix from the camera coor-
dinate system to the world coordinate system, is derived by
integrating data from the drone’s IMU [48]. To reduce the
drift caused by long-term accumulation of IMU data, the
origin of the world coordinate system is set at the drone’s
location upon initial detection of the obstacle.

Subsequently, we perform a recursive prediction of the
obstacle’s state:

θ̂(ti|ti−1) = ϕ(ti)θ̂(ti−1), (14)

ϕ(ti) =

[
I3×3 ∆t · I3×3

03×3 I3×3

]
, (15)

where ϕ(ti) is the linear motion model. The state vector
θ̂ = [p̂w, v̂w]

T is composed of the estimated location and
velocity, and both set to 0 initially.

The gain vector K(ti), dynamically modulates the influ-
ence between new observations and past trajectory on the
state estimate, is calculated as:

K(ti) =
P (ti−1)ϕ(ti)

T

λ+ ϕ(ti)P (ti−1)ϕ(ti)T
, (16)

where P (ti−1) is the error covariance matrix. λ is the for-
getting factor, set to 0.95, balancing the latest measurements

Processing System (PS)

Programmable Logic (PL) Circuits

P-TS
Generation

Dual-Core ARM Cortex-A9 Processor (2*A-Core)

Filtering with
Bi-Consistency

Filtering with
Ego-motion Instruction
Dedicated Circuits for pixel of the left event camera

P-TS
Generation

Filtering with
Ego-motion Instruction

Dedicated Circuits for pixel of the right event camera

#A1 #A2 D
od

ge
C

om
m

an
ds

O
bs

ta
cl

e
Lo

ca
tio

n

§4.1.1

§4.1.1

§4.1.2

§4.2.1

§4.2.1

Bi
no

cu
la

r D
at

a
Pr

oc
es

si
ng

Our handcrafted baseboard
(9cm x 9cm)

Binocular
Event Stream

IMU
Samples

Feature Matching§4.2.2

Obstacle Tracking§4.3

Command Planning

Fig. 12. Implementation of BioDrone on a Zynq chip.

with the existing state estimate.
Upon receiving an updated observation of the obstacle,

the residual between the observed and estimated locations
is computed as follows:

e(ti) = pw(ti)− p̂w(ti|ti−1). (17)

Utilizing the gain vector and the observation residual,
the state estimate is updated as follows:

θ̂(ti) = θ̂(ti−1) +K(ti)e(ti), (18)

and the error covariance matrix is revised for the upcoming
iteration:

P (ti) =
1

λ

(
P (ti−1)−K(ti)ϕ(ti)P (ti−1)

)
. (19)

By iteratively applying Eq.14-19, we continuously up-
date the trajectory of the obstacle while simultaneously
predicting its future location.

In summary, the dorsal stream-inspired obstacle tracking
algorithm compensates for the drone’s irregular motion
(Eq.13) while assuming that obstacles follow continuous
motion within a shot time window. This design offers
two key benefits: (i) it allows for rapid estimation of the
obstacle’s current location from past states, ensuring low
latency. and (ii) with the integration of a forgetting factor, it
prioritizes recent data, which is crucial for real-time obstacle
avoidance, where the immediate state of the obstacle is more
relevant than the stability of its global trajectory.

5 IMPLEMENTATION

BioDrone’s efficient algorithm design enables deployment
on most general-purpose computing units, while more pow-
erful devices are better equipped to handle real-time obsta-
cle avoidance in highly dynamic drone flights. Moreover,
as BioDrone must handle simultaneous event triggers, it is
inherently well-suited for parallel acceleration on platforms
such as FPGA and GPU. In this section, we first describe
its standard implementation on drone platforms (§5.1), fol-
lowed by how heterogeneous computing platforms (i.e.,
Xilinx Zynq-7020) accelerate BioDrone (§5.2).

5.1 BioDrone’s On-Board Implementation
• Hardware: We deploy BioDrone on an AMOVLAB P450-
NX drone. Fig.11 shows the diagram of the drone obstacle
avoidance system. The drone is equipped with two on-
board computational units: (i) a Qualcomm Snapdragon
Flight for monocular visual-inertial odometry (VIO); and

9

A

B

Drone

C1

C2

D2
D1

Obstacle

A

BC1

D1
C2

D2

Markers

O
O

DroneObstacle

(a) Outdoor experiments

A

B

Drone

C1

C2

D2
D1

Obstacle

A

BC1

D1
C2

D2

Markers

O

O

DroneObstacle

(b) Indoor experiments

A

B

Drone

C1

C2

D2
D1

Obstacle

A

BC1

D1
C2

D2

Markers

O

O

DroneObstacle

(c) Different Obstacles

Fig. 13. Experimental scenarios of BioDrone. The red lines show the drone’s movement trajectory.

(ii) Xilinx Zynq-7020 chip or Nvidia Jetson TX2 (accom-
panied with an AUVIDEA J90 carrier board) running Bio-
Drone’s obstacle detection and localization software stack.
The obstacle states (§4.3) are fed to the ArduPilot Mega
(APM) flight controller for route planning. The drone
testbed is equipped with a pair of front-facing DAVIS-346
event cameras. These two cameras are mounted with a
baseline separation of 6cm. The horizontal and vertical FoV
of the event camera is 120◦ and 100◦, respectively, with 346
× 260 pixels QVGA resolution.
• Software: The algorithms are implemented on the robotics
operating system (ROS) in C++. We use the open source
event camera driver [49] to stream event outputs, and the
avoidance algorithm proposed in [23] to plan avoidance
commands based on the trajectory and predicted location
of obstacle. To reduce latency, we implement the obstacle
localization and avoidance algorithms in the same ROS
module, so that no message exchange is needed between
drivers and the position controller.

5.2 Software and Hardware Co-Design
We implement BioDrone on a Xilinx Zynq-7020 through
software-hardware co-design, as shown in Fig.12. It consists
of a processing system (PS) and a programmable logic (PL)
two modules. The PS features a dual-core ARM Cortex-A9
processor (i.e., #A1 and #A2), while PL is for hardware ac-
celeration through FPGA. We also manufacture a baseboard
for data input/output and voltage adaption.
• PL: We design exclusive logic circuits on FPGA to acceler-
ate those event operations suitable for parallel and pipeline
execution, i.e., data denoising, ego-motion-based filtering
(§4.1.1), and P-TS generation (§4.2.1), on PL.
• PS: Before loading specific tasks, we first exploit a core-
isolation strategy to isolate the computing resources of #A1
from PS, reducing the impact of CPU scheduling on task
execution to better match the PL pipelines. We realize it by
building a Linux OS with boot parameter isolcpus=<cpu
#A1>. We execute the binocular-based filtering which re-
quires frequent memory access and cannot be easily imple-
mented through FPGA, on #A1. The feature matching, ob-
stacle tracking, and command planning tasks are executed
on #A2.
• Data flow in-between: We further leverage the physical-
level direct memory access (DMA) technique [50] to trans-
mit intermediate data among PL, #A1, and #A2. Compared
with network-level solutions such as PL-PS ethernet inter-
face [51] and OpenAMP [52], DMA ensures data interaction
processes would not be interrupted by CPU scheduling.

TABLE 1
Different Drone Flight Mode Configurations

Flight Mode*

(Trajectory)
Speed Event Generating

Speed (e/ms)Translation (m/s) Rotation (◦/s)

1 (A → B → C1 → D1) 2.0–6.0 0–10.0 100–400
2 (A ⇒ B → C1 ⇒ D1) 15.0–26.5 0–10.0 350–1200
3 (A → B ↬ C2 → D2) 2.0–6.0 20–100 900–2100

* →: acceleration; →: uniformity; →: deceleration.

6 EVALUATION

6.1 Experimental Methodology
Field studies. We conduct field studies both indoors and
outdoors as shown in Fig.13. The performance is evaluated
in three flight modes, as defined in Table 1. The drone
follows planned trajectories to move, and four volunteers
throw six different types of obstacles toward the drone
during the drone’s movement.
Repeatability. Before conducting experiments under each
flight mode, we program a series of pre-determined flight
commands into the on-board APM flight controller, enabling
the drone to follow the planned trajectory, speed, and accel-
eration, to make our experiments repeatable.
Metrics and Ground truth. The drone logs its localization
results with timestamps. We download these logs and eval-
uate end-to-end (E2E) localization latency ∆tl and error
∆x (defined in §2). Indoors, an OptiTrack motion capture
system could provide <1mm localization ground truth.
Outdoors, since we cannot deploy OptiTrack to obtain
ground truth, we collect event streams and run an advanced
yet heavy event-based object localization and segmentation
neural network [53] offline. The results are taken as ground
truth. We also log event classification results reported by it
to examine BioDrone’s event filtering performance.
Baselines. We compare the accuracy and latency of Bio-
Drone with Baseline-I [23] and -II [29]. We also compare the
LEM module in BioDrone with ESVO [32]. As these base-
lines are not implemented on FPGA, we thus implement
BioDrone on the drone’s onboard Nvidia Jetson TX2 for a
fair comparison with them.

6.2 Overall Performance
Obstacle localization and tracking. We first evaluate the
accuracy of localization and trajectory tracking for obstacles.
As illustrated in Fig.14a, the performance of BioDrone in ob-
stacle single-point localization is compared with two other
systems. BioDrone achieves an average localization error
of 7.5cm, outperforming Baseline-I and Baseline-II, which

10

0 10 20 30 40
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

BioDrone
Baseline-I
Baseline-II

(a) Localization Error

1 2 3
#Flight Mode

0

5

10

15

20

Tr
ac

kin
g

Er
ro

r (
cm

)

BioDrone
Baseline-I
Baseline-II

(b) Tracking Error

1 2 3
#Flight Mode

40%

50%

60%

70%

80%

90%

100%

De
te

cti
on

 S
uc

ce
ss

 R
at

e
(%

) BioDrone
Baseline-I
Baseline-II

(c) Objection Detection Rate

1 2 3
#Flight Mode

0

5

10

15

20

25

30

La
te

nc
y (

m
s)

BioDrone (Zynq)
BioDrone (Jetson)
Baseline-I
Baseline-II

(d) Localization Latency

Fig. 14. Overall Performance Comparison

0 5 10 15 20 25 30
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Ping-pong
Badminton
Pen
Cup
Basketball
Mini Drone

(a) Impact of Obstacle Type

one Two Three
Obstacle Number

0

10

20

30

40

50

60
Lo

ca
tio

n
Er

ro
r (

cm
)

BioDrone
Baseline-I

(b) Impact of Obstacle Number

0 5 10 15 20 25 30
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0.5m-1.0m
1.0m-1.5m
1.5m-2.0m
2.0m-4.0m
4.0m-8.0m

(c) Impact of Obstacle Distance

0 5 10 15 20 25 30
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Normal
Low-Light
Noisy

(d) Impact of Scene Dynamic

Fig. 15. System Robustness Evaluation

exhibit average errors of 15.9cm and 20.4cm, respectively.
Furthermore, when comparing the three systems across
various flight modes in terms of Average Trajectory Error
(ATE), Fig.14b illustrates that BioDrone outperforms the two
baselines by at least 45.9%, 53.8% and 44.6% in flight modes
1, 2 and 3, respectively.
Obstacle detection. As shown in Fig.14c, BioDrone achieves
obstacle detection rates of 96.8%, 90.1%, and 94.2% in three
distinct flight modes, outperforming the baseline by over
10% in low-speed (mode 1) and by more than 51% in high-
speed (modes 2 & 3) scenarios. Unlike related works that
predominantly use ego-motion instruction for event filter-
ing, BioDrone significantly boosts its detection efficiency by
incorporating a binocular consistency constraint.
End-to-end latency. We further evaluate the E2E latency,
covering the obstacle detection, localization, and tracking
phases. As shown in Fig.14d, BioDrone achieves an E2E
latency of under 6.4ms on the general-purpose Jetson plat-
form. When deployed on the Zynq platform, the latency is
reduced by over 20.7%, owing to our FPGA-based hardware
architecture, which facilitates parallel and pipelined pro-
cessing of events, significantly enhancing throughput and
efficiency. On the same Jetson platform, BioDrone outper-
forms baseline methods, reducing latency by over 32.9%
in flight mode 1. As flight speeds increase, the latency for
Baseline-I and II rises significantly, while BioDrone outper-
forms both baselines in flight modes 2 and 3 by more than
52.3% and 34.1%, respectively.

6.3 System Robustness Evaluation

Impact of obstacle type. We assessed how different types
of obstacles (Fig.13c, varying in form factor and texture)
affect performance. The findings, displayed in Fig.15a, re-
veal that smaller and textured obstacles such as ping-pong,
and mini-drone result in lower average localization errors
of 4.1cm, and 5.3cm, respectively. In contrast, obstacles with
fewer textures and larger volumes (e.g., a basketball) tend
to exhibit greater localization errors. This is due to two
factors: (i) the lack of texture directly reduces the number

of events generated within the obstacle’s pixel space, and
(ii) larger obstacles trigger events that are more widely
spaced along their edges. Together, these factors reduce the
effective features captured by the cell operator (§4.2.2) for
stereo matching, reducing the robustness of the localization.

Impact of obstacle quantity. In this experiment, two volun-
teers are asked to throw multiple (2-3) obstacles toward the
drone; we examine the detection and localization results for
each obstacle individually. As depicted in Fig.16b, BioDrone
outperforms Baseline-I by >40% in all settings. As the
number of obstacles grows, we observe a slight increase
(around 3cm) in BioDrone’s localization error. In contrast,
the localization error of Baseline-I grows dramatically to
24.68cm. The results demonstrate that the LEM module
could extract spatio-temporal features of different obstacles
and thus distinguish them from each other. On the contrary,
Baseline-I simply clusters events for triangulation, making
it difficult to separate obstacles close to each other.

Impact of obstacle distance As shown in Fig.15c, when
the obstacle appears at around 1.0-2.0m, BioDrone achieves
the highest localization accuracy where the average location
error is 6.58cm, and the average location error will slightly
increase (within 9.5cm though) as the distance increases.
Generally, a longer distance fails to generate sufficient
events, making the feature matching more challenging.

Impact of environmental dynamic. We further assess Bio-
Drone’s performance in low-light conditions (i.e., night-
time with illumination levels below 30 lux) and in noisy
environments (i.e., 1-3 pedestrians randomly crossing the
camera’s field of view). The results are shown in Fig.15d. As
seen, even in low-light conditions, the average localization
accuracy remains consistent (a minor decrease within 10%),
due to the HDR of event camera that still manages to
capture sufficient events in dark environments. However, in
noisy environments, there is a 33% decrease in average lo-
calization accuracy because BioDrone sometimes interprets
dynamic pedestrians as foreground obstacles. A potential
solution to this problem could be the integration of depth-
based filtering algorithms, which is left as a future work.

11

Baseline w/ CEF w/ LEM w/ DOT BioDrone
Approach

0

5

10

15

20

25
Lo

ca
tio

n
Er

ro
r (

cm
)

0

5

10

15

20

25

La
te

nc
y (

m
s)

(a) Impact of Different Module

B-2 I-2 B-3 I-3
System - #Flight Mode

0%

20%

40%

60%

80%

100%

Ev
en

t F
ilte

rin
g

Ra
te

 (%
)

Recall
Precision

(b) Chiasm-inspired Events Filtering

0 5 10 15 20 25
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

BioDrone
ESVO
Baseline-I

(c) LGN-inspired Events Matching

Baseline KF DOT
Approach

4

5

6

7

8

Lo
ca

tio
n

Er
ro

r (
cm

)

4

5

6

7

8

La
te

nc
y (

m
s)

(d) DS-inspired Obstacle Tracking

Fig. 16. Ablation Study

0 20 40 60 80 100 120
Runtime (ms)

0

2

4

6

8

La
te

nc
y (

m
s)

Dorsal Stream-inspired Obstacle Tracking
LGN-inspired Event Matching
Chiasm-inspired Event Filtering

(a) System Latency

0 20 40 60 80 100 120
Runtime (ms)

0%

20%

40%

60%

CP
U

W
or

klo
ad

 (%
) Dorsal Stream-inspired Obstacle Tracking

LGN-inspired Event Matching
Chiasm-inspired Event Filtering

(b) CPU Workload

0 20 40 60 80 100 120
Runtime (ms)

0

5

10

15

M
em

or
y (

M
B)

LGN-inspired Event Matching
Chiasm-inspired Event Filtering

(c) Memory Usage

Fig. 17. System Efficiency on the Drone

6.4 Ablation Study

Contributions of each module. BioDrone encompasses
three pivotal modules: the Chiasm-inspired Event Filtering
(CEF), the LGN-inspired Event Matching (LEM), and the
Dorsal stream-inspired Obstacle Tracking (DOT). In our
experiment, we assess the individual and combined impacts
of these modules on BioDrone’s performance. We inte-
grate these modules into Baseline-I respectively, evaluating
changes in localization accuracy and end-to-end latency.
According to Fig.17a, Baseline-I, without these modules,
records a localization error of 15.9cm and a latency of
10.4ms. The incorporation of the CEF module leads to a
reduction in localization error to 11.6cm and a decrease in
latency to 6.3ms. Adding the LEM module reduces the local-
ization error to 8.8cm, albeit with a slight increase in delay
due to the absence of an efficient event-filtering mechanism.
And the integration of the DOT module, in place of the
conventional Kalman filter, results in a latency decrease of
0.4ms while maintaining accuracy. Upon fully incorporating
CEF, LEM, and DOT into Baseline-I, the system reaches
optimal performance, minimizing both localization error
and E2E latency.
Performance of CEF. We compare CEF with the filtering
module of Baseline-I in high-speed mode (flight modes 2
and 3). We denote CEF in mode 2 and mode 3 as B-2 and
B-3, respectively. Likewise, the filtering module of Baseline-I
as I-2 and I-3, respectively. In Fig.16b, a higher recall means
more obstacle-triggered events are preserved while a higher
precision indicates more background events are removed.
As seen, the recall of CEF is ≥ 85% and its precision is ≥
84% under all flight modes. In contrast, the filter module
of Baseline-I achieves an inferior recall of 43% under flight
mode 3. Even worse, the precision further drops to 28%
under flight mode 2. This result demonstrates the efficacy
of CEF in event filtering.
Performance of LEM. We evaluate the performance of LEM
by comparing it with the localization module in ESVO [32]
and Baseline-I. As shown in Fig.16c, LEM reduces localiza-
tion error by 23.8% compared to ESVO where event fea-

tures are matched using naive block-matching operations.
Besides, compared with Baseline-I, which exploits event
clustering and triangulates the spatial location of an object
at cluster-level, LEM reduces the localization error by 55.1%.
Performance of DOT. We evaluate the enhancement in
obstacle tracking introduced by the proposed DOT algo-
rithm. In this experiment, a BioDrone setup without any
tracking algorithm serves as the Baseline, while Kalman
Filter (KF) implementations from Baseline-I and -II are used
for comparison. As illustrated in Fig.16d, DOT, compared
to the Baseline, reduces localization error by 30.6% and
achieves precision comparable to KF, with only a marginal
increase in computation delay of 0.12ms. In contrast, the
KF approach requires an average latency of 0.46ms, which
heightens the risk of obstacle avoidance failure.

6.5 System Efficiency Study
As a drone-oriented obstacle avoidance system, it is im-
portant to achieve a balance among computing latency,
CPU workload and memory usage, to ensure the system
effectively working on resource-constrained drone devices.
We analyzed a representative 120ms obstacle avoidance sce-
nario, logging system latency, CPU workload, and memory
usage as shown in Fig.17. The drone detects an obstacle at
24ms and promptly initiates an avoidance maneuver, with
the obstacle leaving the drone’s field of view after 110ms.
• 0-24ms: Before the obstacle is perceived, LEM and DOT
remain inactive, contributing negligible computing latency
and CPU workload. CEF operates during this phase with a
latency under 0.15ms and CPU workload below 10%.
• 24-110ms: Upon obstacle detection, CEF experiences in-
creased computing latency and CPU workload due to
heightened event activity, yet maintains a low latency of
2.65ms and CPU usage under 13%. Concurrently, LEM
actively localizes the obstacle, adding 2.42ms of latency and
approximately 25% CPU workload. DOT, while persistently
tracking and predicting obstacle positions, incurs a maxi-
mum of 0.2ms computational latency, 5% CPU workload,
and negligible memory usage.

12

• 110-120ms: As the drone successfully avoids the obstacle,
the modules revert to their pre-24ms states in terms of
latency and CPU workload. Across the entire process, the
memory footprint of the three modules remains <11 MB.
Throughout the avoidance procedure, BioDrone reserves
over 50% of CPU resources for higher-level tasks.

In addition, in comparison to traditional drone-based
industrial applications, BioDrone requires the use of stereo
event cameras, which introduces additional resource con-
sumption. Specifically, (i) the weight of the event cameras
has a marginal impact on the overall power consumption
of the drone. In our configuration, two DAVIS 346 event
cameras weigh a total of 200g, which is considerably lower
than the maximum payload capacity of industrial drones
(e.g., the P450 drone, >2.2kg). As event cameras continue
to improve with better integration and lighter designs, this
impact is expected to diminish further. (ii) Moreover, while
event cameras do consume some power (typically less than
100mW [26]), their exceptionally low energy demand makes
them highly suitable as sensors for drone applications.

7 RELATED WORK

Obstacle avoidance with traditional sensors. Nowadays,
fast and safe obstacle avoidance has attracted great interest
from both academia and industry [54]. Current research
predominantly utilizes frame-based cameras (i.e., monoc-
ular [55] and stereo systems [56]), depth cameras [57],
millimeter-wave radars [58], and LiDAR [59]. However,
these approaches typically presume that obstacles are ei-
ther stationary or exhibit only slow relative motion (i.e.,
less than 5m/s), and fall short for high-speed drones (i.e.,
relative speeds exceeding 20m/s). This limitation is rooted
in the inherent properties of the sensors and is not readily
addressable through algorithmic enhancements.
Event-based algorithms and systems. Event cameras,
heralding significant advantages over frame-based cameras,
provide high temporal resolution, low latency, and high dynamic
range. Recent years have seen an upsurge in research devel-
oping algorithms and systems utilizing event cameras [26],
such as scene reconstruction [32], SLAM [60], object tracking
[23], [29], and HDR image reconstruction [61]. Among these,
Baseline-I [23] emerges as a significant drone obstacle avoid-
ance solution, employing IMU data to eliminate background
events and enhance obstacle detection, closely aligning with
our research. Our work, BioDrone, diverges from Baseline-
I’s monocular setup, embracing a binocular configuration
for obstacle localization. This transition from detection to
localization, alongside the shift in hardware setup, presents
new challenges in fully exploiting the capabilities of event
cameras for drone obstacle avoidance.
Bio-inspired design for event-based vision. Biological
principles drive the design of event camera pixels and
some event processing algorithms, such as spiking neural
networks (SNN [39]), spatiotemporal oriented filters (STOF
[62]), and spike-timing dependent plasticity (STDP [63]).
In general, current innovations mainly mimic the working
principles of the human visual cortex and design sophis-
ticated algorithms for high-level object recognition [64],
segmentation [38], and understanding [65]. Albeit inspiring,
these bio-inspired systems are not the optimal solution for
obstacle avoidance-related tasks due to the large computa-
tional overhead. In BioDrone, we find those delay-sensitive
tasks are not executed at the visual cortex but exactly at

the earlier binocular visual pathway. We take the bio-lessons
learned from it and design BioDrone for fast obstacle detec-
tion, matching, and tracking.

8 CONCLUSIONS

We have presented the design and implementation of Bio-
Drone, a solution to support fast and accurate drone obstacle
detection and localization using event cameras. BioDrone
exploits biological knowledge behind human visual sys-
tems and designs a visual pathway-inspired architecture,
a chiasm-inspired event filtering module, an LGN-inspired
event matching mechanism, and a dorsal stream-inspired
obstacle tracking algorithm to unleash the full potential of
event cameras. We fully implement BioDrone on a Zynq
chip through software-hardware co-design. Extensive eval-
uations conducted on an industrial drone demonstrate its
superior performance. Through BioDrone, we present that
the bio-inspired design paradigm produces simple yet ef-
fective solutions to potentially replace heavy-weight ones,
adding a new solution dimension for sensing problems with
strict restrictions on accuracy, latency, and computation.

9 ACKNOWLEDGMENTS

We sincerely thank the MobiSense group and the anony-
mous reviewers for their insightful comments. This work is
supported in part by the NSFC under grant No. 62372265,
No. 62302254, and No. 62402276.

REFERENCES

[1] S. Jha, Y. Li, S. Noghabi, V. Ranganathan, P. Kumar, A. Nelson,
M. Toelle, S. Sinha, R. Chandra, and A. Badam, “Visage: enabling
timely analytics for drone imagery,” in ACM MobiCom, 2021.

[2] A. Jain, Z. Kapetanovic, A. Kumar, V. N. Swamy, R. Patil, D. Va-
sisht, R. Sharma, M. Swaminathan, R. Chandra, A. Badam et al.,
“Low-cost aerial imaging for small holder farmers,” in Proceedings
of the ACM Compass, 2019.

[3] A. Balasingam, K. Gopalakrishnan, R. Mittal, M. Alizadeh, H. Bal-
akrishnan, and H. Balakrishnan, “Toward a marketplace for aerial
computing,” in Proceedings of the ACM DroNet, 2021.

[4] Y. Ma, N. Selby, and F. Adib, “Drone relays for battery-free
networks,” in Proceedings of the ACM Sigcomm, 2017.

[5] W. Wang, L. Mottola, Y. He, J. Li, Y. Sun, S. Li, H. Jing, and Y. Wang,
“Micnest: Long-range instant acoustic localization of drones in
precise landing,” in Proceedings of the ACM Sensys, 2022.

[6] K.-L. Wright, A. Sivakumar, P. Steenkiste, B. Yu, and F. Bai,
“Cloudslam: Edge offloading of stateful vehicular applications,”
in Proceedings of the IEEE/ACM SEC, 2020.

[7] R. K. Sheshadri, E. Chai, K. Sundaresan, and S. Rangarajan, “Sky-
haul: A self-organizing gigabit network in the sky,” in Proceedings
of the ACM MobiHoc, 2021.

[8] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Perga-
ment, E. Cidon, S. Katti, and M. Pavone, “Network offloading poli-
cies for cloud robotics: a learning-based approach,” Autonomous
Robots, vol. 45, no. 7, pp. 997–1012, 2021.

[9] A. J. B. Ali, Z. S. Hashemifar, and K. Dantu, “Edge-slam: edge-
assisted visual simultaneous localization and mapping,” in Pro-
ceedings of the ACM Mobisys, 2020.

[10] J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu,
“Swarmmap: Scaling up real-time collaborative visual slam at the
edge,” in Proceedings of the USENIX NSDI, 2022.

[11] Y. Chen, H. Inaltekin, and M. Gorlatova, “AdaptSLAM: Edge-
assisted adaptive slam with resource constraints via uncertainty
minimization,” in Proceedings of the IEEE INFOCOM, 2023.

[12] DJI, “DJI Industrial Drones,” https://www.dji.com/products/
industrial, 2020.

[13] Amazon, “Amazon Drones Swarm,” https://www.amazon.com/
Amazon-Prime-Air/b?ie=UTF8&node=8037720011, 2021.

[14] D. Mail, “When eagles attack! drone camera mistaken
for rival,” www.dailymail.co.uk/video/news/video-1154408/
Golden-Eagle-attacks-drone-cameramistaking-rival.html, 2016.

13

[15] CNet, “Hawk attacks drone in a battle of claw versus machine,”
www.cnet.com/news/this-hawk-has-no-love-for-your-drone/,
2016.

[16] U. Ali, H. Cai, Y. Mostofi, and Y. Wardi, “Motion-communication
co-optimization with cooperative load transfer in mobile robotics:
An optimal control perspective,” IEEE Transactions on Control of
Network Systems, vol. 6, no. 2, pp. 621–632, 2018.

[17] N. Garg and N. Roy, “Enabling self-defense in small drones,” in
Proceedings of the ACM HotMobile Workshop, 2020, pp. 15–20.

[18] T. Eppenberger, G. Cesari, M. Dymczyk, R. Siegwart, and R. Dubé,
“Leveraging stereo-camera data for real-time dynamic obstacle
detection and tracking,” in Proceedings of the IEEE/RSJ IROS, 2020.

[19] F. Wimbauer, N. Yang, L. Von Stumberg, N. Zeller, and D. Cremers,
“Monorec: Semi-supervised dense reconstruction in dynamic en-
vironments from a single moving camera,” in Proceedings of the
IEEE/CVF CVPR, 2021.

[20] D. Hutabarat, M. Rivai, D. Purwanto, and H. Hutomo, “Lidar-
based obstacle avoidance for the autonomous mobile robot,” in
Proceedings of the IEEE ICTS, 2019.

[21] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed naviga-
tion for quadrotors with limited onboard sensing,” in Proceedings
of the IEEE ICRA, 2016.

[22] J. Xu, G. Chi, Z. Yang, D. Li, Q. Zhang, Q. Ma, and X. Miao, “Fol-
lowupar: Enabling follow-up effects in mobile ar applications,” in
Proceedings of the ACM MobiSys, June 24-July 2 2021.

[23] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle
avoidance for quadrotors with event cameras,” Science Robotics,
vol. 5, no. 40, p. eaaz9712, 2020.

[24] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature
tracking with probabilistic data association,” in Proceedings of the
IEEE ICRA, 2017.

[25] H. Kim, S. Leutenegger, and A. J. Davison, “Real-time 3d recon-
struction and 6-dof tracking with an event camera,” in Proceedings
of the Springer ECCV, 2016.

[26] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis
et al., “Event-based vision: A survey,” IEEE transactions on pattern
analysis and machine intelligence, vol. 44, no. 1, pp. 154–180, 2020.

[27] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “Asyn-
chronous convolutional networks for object detection in neuro-
morphic cameras,” in IEEE/CVF CVPR Workshops, 2019.

[28] B. He, H. Li, S. Wu, D. Wang, Z. Zhang, Q. Dong, C. Xu, and
F. Gao, “Fast-dynamic-vision: Detection and tracking dynamic
objects with event and depth sensing,” in IEEE/RSJ IROS, 2021.

[29] A. Mitrokhin, C. Fermüller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in Proceed-
ings of the IEEE IROS, 2018.

[30] Y. Nam, M. Mostafavi, K.-J. Yoon, and J. Choi, “Stereo depth
from events cameras: Concentrate and focus on the future,” in
Proceedings of the IEEE/CVF CVPR, 2022, pp. 6114–6123.

[31] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza,
“Ultimate slam? combining events, images, and imu for robust
visual slam in hdr and high-speed scenarios,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 994–1001, 2018.

[32] Y. Zhou, G. Gallego, and S. Shen, “Event-based stereo visual
odometry,” IEEE Transactions on Robotics, 2021.

[33] R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and
image understanding, vol. 68, no. 2, pp. 146–157, 1997.

[34] N. Pham, H. Jia, M. Tran, T. Dinh, N. Bui, Y. Kwon,
D. Ma, P. Nguyen, C. Mascolo, and T. Vu, “Pros: an efficient
pattern-driven compressive sensing framework for low-power
biopotential-based wearables with on-chip intelligence,” in ACM
MobiCom, 2022.

[35] A. Bakar, R. Goel, J. de Winkel, J. Huang, S. Ahmed, B. Islam,
P. Pawełczak, K. S. Yıldırım, and J. Hester, “Protean: An energy-
efficient and heterogeneous platform for adaptive and hardware-
accelerated battery-free computing,” in Proceedings of the ACM
SenSys, 2022.

[36] Xilinx, “Xilinx Zynq-7000 SoC,” https://www.xilinx.com/
products/silicon-devices/soc/zynq-7000, 2022.

[37] Ardupilot, “ArduPilot Mega,” https://ardupilot.org/, 2018.
[38] A. Mitrokhin, Z. Hua, C. Fermuller, and Y. Aloimonos, “Learning

visual motion segmentation using event surfaces,” in IEEE CVPR,
2020.

[39] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural
networks, 2019.

[40] G. Jeffery, “Architecture of the optic chiasm and the mechanisms
that sculpt its development,” Physiological Reviews, vol. 81, no. 4,
pp. 1393–1414, 2001.

[41] K. E. Cullen, “The vestibular system: multimodal integration and
encoding of self-motion for motor control,” Trends in neurosciences,
vol. 35, no. 3, pp. 185–196, 2012.

[42] C. Tailby, S. K. Cheong, A. N. Pietersen, S. G. Solomon, and P. R.
Martin, “Colour and pattern selectivity of receptive fields in su-
perior colliculus of marmoset monkeys,” The Journal of Physiology,
vol. 590, no. 16, pp. 4061–4077, 2012.

[43] M. Mishkin, L. G. Ungerleider, and K. A. Macko, “Object vision
and spatial vision: two cortical pathways,” Trends in neurosciences,
1983.

[44] L. Erskine and E. Herrera, “The retinal ganglion cell axon’s
journey: insights into molecular mechanisms of axon guidance,”
Developmental biology, 2007.

[45] Z. Zhang, “Determining the epipolar geometry and its uncer-
tainty: A review,” International journal of computer vision, 1998.

[46] H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Path-
guided artificial potential fields with stochastic reachable sets for
motion planning in highly dynamic environments,” in 2015 IEEE
international conference on robotics and automation (ICRA), 2015.

[47] A. Singletary, K. Klingebiel, J. Bourne, A. Browning, P. Tokumaru,
and A. Ames, “Comparative analysis of control barrier functions
and artificial potential fields for obstacle avoidance,” in IEEE/RSJ
IROS, 2021.

[48] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile
monocular visual-inertial state estimator,” Proceedings of the IEEE
Transactions on Robotics, 2018.

[49] UZH, “Event Camera Driver,” https://github.com/uzh-rpg/rpg
dvs ros, 2022.

[50] Xilinx, “Direct Memory Access,” https://www.xilinx.com/
products/intellectual-property/axi dma.html, 2022.

[51] X. Inc. (2022) Mpsoc ps and pl
ethernet example projects. [Online]. Avail-
able: https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
478937213/MPSoC+PS+and+PL+Ethernet+Example+Projects

[52] OpoenAMP. (2022) Openamp project. [Online]. Available:
https://www.openampproject.org/

[53] I. Alonso and A. C. Murillo, “Ev-segnet: Semantic segmentation
for event-based cameras,” in IEEE/CVF CVPR, 2019.

[54] P. Fraga-Lamas, L. Ramos, V. Mondéjar-Guerra, and T. M.
Fernández-Caramés, “A review on iot deep learning uav systems
for autonomous obstacle detection and collision avoidance,” Re-
mote Sensing, 2019.

[55] Z. Zhang, Y. Cao, M. Ding, L. Zhuang, and J. Tao, “Monocular
vision based obstacle avoidance trajectory planning for unmanned
aerial vehicle,” Aerospace Science and Technology, 2020.

[56] V. S. Kalogeiton, K. Ioannidis, G. C. Sirakoulis, and E. B. Kos-
matopoulos, “Real-time active slam and obstacle avoidance for an
autonomous robot based on stereo vision,” Cybernetics and Systems,
2019.

[57] D. Wang, W. Li, X. Liu, N. Li, and C. Zhang, “Uav environmental
perception and autonomous obstacle avoidance: A deep learning
and depth camera combined solution,” Computers and Electronics
in Agriculture, 2020.

[58] H. Yu, F. Zhang, P. Huang, C. Wang, and L. Yuanhao, “Au-
tonomous obstacle avoidance for uav based on fusion of radar
and monocular camera,” in IEEE/RSJ IROS, 2020.

[59] N. Baras, G. Nantzios, D. Ziouzios, and M. Dasygenis, “Au-
tonomous obstacle avoidance vehicle using lidar and an embed-
ded system,” in Proceedings of the ACM MOCAST, 2019.

[60] H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza, “Evo:
A geometric approach to event-based 6-dof parallel tracking and
mapping in real time,” IEEE Robotics and Automation Letters, 2016.

[61] M. Mostafavi, L. Wang, and K.-J. Yoon, “Learning to reconstruct
hdr images from events, with applications to depth and flow
prediction,” International Journal of Computer Vision, 2021.

[62] G. Orchard, R. Benosman, R. Etienne-Cummings, and N. V.
Thakor, “A spiking neural network architecture for visual motion
estimation,” in 2013 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 2013, pp. 298–301.

[63] N. Caporale and Y. Dan, “Spike timing–dependent plasticity: a
hebbian learning rule,” Annu. Rev. Neurosci., 2008.

[64] Y. Nan, R. Xiao, S. Gao, and R. Yan, “An event-based hierarchy
model for object recognition,” in 2019 IEEE Symposium Series on
Computational Intelligence (SSCI), 2019.

[65] L. A. Camuñas-Mesa, T. Serrano-Gotarredona, S.-H. Ieng,
R. Benosman, and B. Linares-Barranco, “Event-driven stereo vi-
sual tracking algorithm to solve object occlusion,” IEEE transac-
tions on neural networks and learning systems, 2017.

14

Danyang Li received the B.E. degree in School
of Software from Yanshan University in 2019
and the M.E. degree in School of Software from
Tsinghua University in 2022. He is currently pur-
suing his Ph.D. degree in School of Software, Ts-
inghua University. His research interests include
Internet of Things and mobile computing.

Jingao Xu received his B.E. and Ph.D. degree
in School of Software from Tsinghua University
in 2017 and 2022, respectively. He is now a
Postdoc research fellow in School of Software,
Tsinghua University. His research interests in-
clude Internet of Things and mobile computing.

Zheng Yang is an associate professor at Ts-
inghua University. He received a B.E. degree
in computer science from Tsinghua University
in 2006 and a Ph.D. degree in computer sci-
ence from Hong Kong University of Science and
Technology in 2010. His main research interests
include Internet of Things and mobile computing.
He is the PI of National Natural Science Fund for
Excellent Young Scientist and has been awarded
the State Natural Science Award (second class).

Yishujie Zhao received his B.E. and B.F.A. de-
grees from Tsinghua University at 2022, now his
is pursuing a M.E. degree at School of Soft-
ware, Tsinghua University under the supervision
of Prof. Zheng Yang.

Hao Cao received his B.E. degree in College
of Intelligence and Computing from Tianjin Uni-
versity in 2019. He is now a Ph.D. candidate
in School of Software, Tsinghua University. His
research interests include Internet of Things and
mobile computing.

Yunhao Liu received his B.S. degree in Automa-
tion Department from Tsinghua University, and
an M.A. degree in Beijing Foreign Studies Uni-
versity, China. He received an M.S. and a Ph.D.
degree in Computer Science and Engineering at
Michigan State University, USA. Yunhao is now
MSU Foundation Professor and Chairperson of
Department of Computer Science and Engineer-
ing, Michigan State University, and holds Chang
Jiang Chair Professorship at Tsinghua Univer-
sity.

Longfei Shangguan received the B.S. degree
from the School of Software, Xidian University,
Shanghai, China, in 2011, and the Ph.D. degree
from the Department of Computer Science and
Engineering, the Hong Kong University of Sci-
ence and Technology, Hong Kong, in 2015. He
is currently a researcher with Microsoft. His re-
search interests include wireless networks, mo-
bile systems, and low-power communication.

